Trace Cobalt Doping and Defect Engineering of High Surface Area α-Ni(OH)2 for Electrocatalytic Urea Oxidation
Yi Liu, Zhihui Yang, Yuqin Zou, Shuangyin Wang, Junying He
Trace Cobalt Doping and Defect Engineering of High Surface Area α-Ni(OH)2 for Electrocatalytic Urea Oxidation
Owing to the intrinsically sluggish kinetics of urea oxidation reaction (UOR) involving a six-electron transfer process, developing efficient UOR electrocatalyst is a great challenge remained to be overwhelmed. Herein, by taking advantage of 2-Methylimidazole, of which is a kind of alkali in water and owns strong coordination ability to Co2+ in methanol, trace Co (1.0 mol%) addition was found to induce defect engineering on α-Ni(OH)2 in a dual-solvent system of water and methanol. Physical characterization results revealed that the synthesized electrocatalyst (WM-Ni0.99Co0.01(OH)2) was a kind of defective nanosheet with thickness around 5-6 nm, attributing to the synergistic effect of Co doping and defect engineering, its electron structure was finely altered, and its specific surface area was tremendously enlarged from 68 to 172.3 m2 g-1. With all these merits, its overpotential to drive 10 mA cm-2 was reduced by 110 mV. Besides, the interfacial behavior of UOR was also well deciphered by operando electrochemical impedance spectroscopy.
defect engineering / electrocatalysis / small molecule oxidation
[1] |
S.-K. Geng , Y. Zheng , S.-Q. Li , H. Su , X. Zhao , J. Hu , H.-B. Shu , M. Jaroniec , P. Chen , Q.-H. Liu , S.-Z. Qiao , Nat. Energy 2021, 6, 904.
|
[2] |
K. Kempa , U. Moslener , O. Schenker , Nat. Energy 2021, 6, 135.
|
[3] |
J. He , W. Chen , H. Gao , Y. Chen , L. Zhou , Y. Zou , R. Chen , L. Tao , X. Lu , S. Wang , Chem. Catalysis 2022, 2, 578.
|
[4] |
E. T. Sayed , T. Eisa , H. O. Mohamed , M. A. Abdelkareem , A. Allagui , H. Alawadhi , K.-J. Chae , J. Power Sources 2019, 417, 159.
|
[5] |
J. Li , J. Li , T. Liu , L. Chen , Y. Li , H. Wang , X. Chen , M. Gong , Z. P. Liu , X. Yang , Angew. Chem. 2021, 133, 26860.
|
[6] |
B. Zhu , Z. Liang , R. Zou , Small 2020, 16, 1906133.
|
[7] |
S. Huang , Q. Zhang , P. Xin , J. Zhang , Q. Chen , J. Fu , Z. Jin , Q. Wang , Z. Hu , Small 2022, 18, 2106841.
|
[8] |
V. Vedharathinam , G. G. Botte , Electrochim. Acta 2013, 108, 660.
|
[9] |
C. Lin , Z. Gao , F. Zhang , J. Yang , B. Liu , J. Jin , J. Mater. Chem. A 2018, 6, 13867.
|
[10] |
N. Senthilkumar , G. Gnana kumar , A. Manthiram , Adv. Energy Mater. 2018, 8, 1702207.
|
[11] |
R. P. Forslund , J. T. Mefford , W. G. Hardin , C. T. Alexander , K. P. Johnston , K. J. Stevenson , ACS Catal. 2016, 6, 5044.
|
[12] |
Y. Tong , P. Chen , M. Zhang , T. Zhou , L. Zhang , W. Chu , C. Wu , Y. Xie , ACS Catal. 2017,
CrossRef
Google scholar
|
[13] |
L. Wang , Y. Zhu , Y. Wen , S. Li , C. Cui , F. Ni , Y. Liu , H. Lin , Y. Li , H. Peng , Angew. Chem. 2021, 133, 10671.
|
[14] |
Y. Ding , Y. Li , Y. Xue , B. Miao , S. Li , Y. Jiang , X. Liu , Y. Chen , Nanoscale 2019, 11, 1058.
|
[15] |
S. Periyasamy , P. Subramanian , E. Levi , D. Aurbach , A. Gedanken , A. Schechter , ACS Appl. Mater. Interfaces 2016, 8, 12176.
|
[16] |
Z. Ji , Y. Song , S. Zhao , Y. Li , J. Liu , W. Hu , ACS Catal. 2021, 12, 569.
|
[17] |
G. Wang , K. Ye , J. Shao , Y. Zhang , K. Zhu , K. Cheng , J. Yan , G. Wang , D. Cao , Int. J. Hydrogen Energy 2018, 43, 9316.
|
[18] |
S. Wang , L. Zhao , J. Li , X. Tian , X. Wu , L. Feng , J. Energy Chem. 2022, 66, 483.
|
[19] |
J. Li , S. Wang , S. Sun , X. Wu , B. Zhang , L. Feng , J. Mater. Chem. A 2022, 10, 9308.
|
[20] |
X. Zhu , X. Dou , J. Dai , X. An , Y. Guo , L. Zhang , S. Tao , J. Zhao , W. Chu , X. C. Zeng , C. Wu , Y. Xie , Angew. Chem. 2016, 55, 12465.
|
[21] |
M. Gao , W. Sheng , Z. Zhuang , Q. Fang , S. Gu , J. Jiang , Y. Yan , J. Am. Chem. Soc. 2014, 136, 7077.
|
[22] |
S. Jahangiri , N. J. Mosey , Phys. Chem. Chem. Phys. 2018, 20, 11444.
|
[23] |
M. J. Eslamibidgoli , A. Gross , M. Eikerling , Phys. Chem. Chem. Phys. 2017, 19, 22659.
|
[24] |
J. He , Y. Zou , Y. Huang , C. Li , Y. Liu , L. Zhou , C.-L. Dong , X. Lu , S. Wang , SCIENCE CHINA Chem. 2020, 63, 1684.
|
[25] |
T.-H. Wu , B.-W. Hou , Cat. Sci. Technol. 2021, 11, 4294.
|
[26] |
Y. Zhang , Y. Zhao , W. An , L. Xing , Y. Gao , J. Liu , J. Mater. Chem. A 2017, 5, 10039.
|
[27] |
L. Zhang , L. Wang , H. Lin , Y. Liu , J. Ye , Y. Wen , A. Chen , L. Wang , F. Ni , Z. Zhou , S. Sun , Y. Li , B. Zhang , H. Peng , Angew. Chem. Int. Ed. 2019, 58, 16820.
|
[28] |
J. Xie , W. Liu , X. Zhang , Y. Guo , L. Gao , F. Lei , B. Tang , Y. Xie , ACS Mater. Lett. 2019, 1, 103.
|
[29] |
J.-H. Yang , X. Song , X. Zhao , Y. Wang , Y. Yang , L. Gao , Int. J. Hydrogen Energy 2019, 44, 16305.
|
[30] |
J. He , Y. Zou , S. Wang , Dalton Trans. 2018, 48, 15.
|
[31] |
B. Zhang , J. Zhang , X. Tan , D. Tan , J. Shi , F. Zhang , L. Liu , Z. Su , B. Han , L. Zheng , J. Zhang , Chem. Commun. 2018, 54, 4045.
|
[32] |
J. Xie , X. Zhang , H. Zhang , J. Zhang , S. Li , R. Wang , B. Pan , Y. Xie , Adv. Mater. 2017, 29, 1604765.
|
[33] |
Q. Yao , B. Huang , N. Zhang , M. Sun , Q. Shao , X. Huang , Angew. Chem. 2019, 58, 13983.
|
[34] |
M. Zhao , Y. Gu , W. Gao , P. Cui , H. Tang , X. Wei , H. Zhu , G. Li , S. Yan , X. Zhang , Z. Zou , Appl. Catal. Environ. 2020, 266, 118625.
|
[35] |
K. Chu , F. Liu , J. Zhu , H. Fu , H. Zhu , Y. Zhu , Y. Zhang , F. Lai , T. Liu , Adv. Energy Mater. 2021, 11, 2003799.
|
[36] |
X. Yu , J. Zhao , L.-R. Zheng , Y. Tong , M. Zhang , G. Xu , C. Li , J. Ma , G. Shi , ACS Energy Lett. 2017, 3, 237.
|
[37] |
X. Ge , C. D. Gu , X. L. Wang , J. P. Tu , J. Mater. Chem. A 2014, 2, 17066.
|
[38] |
Y. Wang , T. Zhou , K. Jiang , P. Da , Z. Peng , J. Tang , B. Kong , W.-B. Cai , Z. Yang , G. Zheng , Adv. Energy Mater. 2014, 4, 1400696.
|
[39] |
Y. Qi , Y. Zhang , L. Yang , Y. Zhao , Y. Zhu , H. Jiang , C. Li , Nat. Commun. 2022,
CrossRef
Google scholar
|
/
〈 | 〉 |