Enhanced High-Temperature Energy Storage Performance of All-Organic Composite Dielectric via Constructing Fiber-Reinforced Structure
Mengjia Feng, Yu Feng, Changhai Zhang, Tiandong Zhang, Xu Tong, Qiang Gao, Qingguo Chen, Qingguo Chi
Enhanced High-Temperature Energy Storage Performance of All-Organic Composite Dielectric via Constructing Fiber-Reinforced Structure
Optimizing the high-temperature energy storage characteristics of energy storage dielectrics is of great significance for the development of pulsed power devices and power control systems. Selecting a polymer with a higher glass transition temperature (Tg) as the matrix is one of the effective ways to increase the upper limit of the polymer operating temperature. However, current high-Tg polymers have limitations, and it is difficult to meet the demand for high-temperature energy storage dielectrics with only one polymer. For example, polyetherimide has high-energy storage efficiency, but low breakdown strength at high temperatures. Polyimide has high corona resistance, but low high-temperature energy storage efficiency. In this work, combining the advantages of two polymer, a novel high-Tg polymer fiber-reinforced microstructure is designed. Polyimide is designed as extremely fine fibers distributed in the composite dielectric, which will facilitate the reduction of high-temperature conductivity loss for polyimide. At the same time, due to the high-temperature resistance and corona resistance of polyimide, the high-temperature breakdown strength of the composite dielectric is enhanced. After the polyimide content with the best high-temperature energy storage characteristics is determined, molecular semiconductors (ITIC) are blended into the polyimide fibers to further improve the high-temperature efficiency. Ultimately, excellent high-temperature energy storage properties are obtained. The 0.25 vol% ITIC-polyimide/polyetherimide composite exhibits high-energy density and high discharge efficiency at 150 ℃ (2.9 J cm-3, 90%) and 180 ℃ (2.16 J cm-3, 90%). This work provides a scalable design idea for high-performance all-organic high-temperature energy storage dielectrics.
all-organic / energy storage density / high-temperature / high-temperature breakdown strength
[1] |
X. Wu, X. Chen, Q. M. Zhang, D. Q. Tan, Energy Storage Mater. 2022, 44, 29.
|
[2] |
P. Wang, L. Yao, Z. Pan, S. Shi, J. Yu, Y. Zhou, Y. Liu, J. Liu, Q. Chi, J. Zhai, Q. Wang, Adv. Mater. 2021, 33, e2103338.
|
[3] |
G. Wang, Z. Lu, Y. Li, L. Li, H. Ji, A. Feteira, D. Zhou, D. Wang, S. Zhang, I. M. Reaney, Chem. Rev. 2021, 121, 6124.
|
[4] |
M. Feng, Y. Feng, T. Zhang, J. Li, Q. Chen, Q. Chi,, Q. Lei, Adv. Sci. 2021, 8, e2102221.
|
[5] |
M. Feng, C. Zhang, G. Zhou, T. Zhang, Y. Feng, Q. Chi, Q. Lei, IEEE Access 2020, 8, 81542.
|
[6] |
M. Feng, Q. Chi, Y. Feng, Y. Zhang, T. Zhang, C. Zhang, Q. Chen, Q. Lei, Compos. Part B Eng. 2020, 198, 108206.
|
[7] |
C. Wang, G. He, S. Chen, D. Zhai, H. Luo, D. Zhang, J. Mater. Chem. A 2021, 9, 8674.
|
[8] |
H. Chen, Z. Pan, Y. Cheng, X. Ding, J. Liu, Q. Chi, M. Yang, J. Yu, Z.-M. Dang, J. Mater. Chem. A 2022, 10, 1579.
|
[9] |
M. Feng, T. Zhang, C. Song, C. Zhang, Y. Zhang, Y. Feng, Q. Chi, Q. Chen, Q. Lei, Polymers 2020, 12, 1972.
|
[10] |
K. Yin, J. Zhang, Z. Li, J. Feng, C. Zhang, X. Chen, A. Olah, D. E. Schuele, L. Zhu, E. Baer, J. Appl. Polym. Sci. 2019, 136, 47535.
|
[11] |
Q. Li, F.-Z. Yao, Y. Liu, G. Zhang, H. Wang, Q. Wang, Annu. Rev. Mater. Res. 2018, 48, 219.
|
[12] |
D. Q. Tan, Adv. Funct. Mater. 2019, 30, 1808567.
|
[13] |
R. Guo, H. Luo, M. Yan, X. Zhou, K. Zhou, D. Zhang, Nano Energy 2021, 79, 105412.
|
[14] |
H. Hu, F. Zhang, S. Luo, W. Chang, J. Yue, C.-H. Wang, Nano Energy 2020, 74, 104844.
|
[15] |
J. Jiang, Z. Shen, J. Qian, Z. Dan, M. Guo, Y. He, Y. Lin, C.-W. Nan, L. Chen, Y. Shen, Nano Energy 2019, 62, 220.
|
[16] |
T. Zhang, X. Zhao, C. Zhang, Y. Zhang, Y. Zhang, Y. Feng, Q. Chi, Q. Chen, Chem. Eng. J. 2021, 408, 127314.
|
[17] |
Y. Cui, X. Wang, T. Zhang, C. Zhang, Q. Chi, RSC Adv. 2019, 9, 33229.
|
[18] |
Q. Li, F. Liu, T. Yang, M. R. Gadinski, G. Zhang, L. Q. Chen, Q. Wang, Proc. Natl. Acad. Sci. USA 2016, 113, 9995.
|
[19] |
Q. Chi, Z. Gao, T. Zhang, C. Zhang, Y. Zhang, Q. Chen, X. Wang, Q. Lei, ACS Sustain. Chem. Eng. 2018, 7, 748.
|
[20] |
Y. Wang, Z. Li, C. Wu, Y. Cao, Chem. Eng. J. 2020, 401, 126093.
|
[21] |
J. Li, X. Liu, Y. Feng, J. Yin, Prog. Polym. Sci. 2022, 126, 101505.
|
[22] |
G. Liu, T. Zhang, Y. Feng, Y. Zhang, C. Zhang, Y. Zhang, X. Wang, Q. Chi, Q. Chen, Q. Lei, Chem. Eng. J. 2020, 389, 124443.
|
[23] |
Q. Li, L. Chen, M. R. Gadinski, S. Zhang, G. Zhang, U. Li, E. Iagodkine, A. Haque, L. Q. Chen, N. Jackson, Q. Wang, Nature 2015, 523, 576.
|
[24] |
Y. Zhou, Q. Li, B. Dang, Y. Yang, T. Shao, H. Li, J. Hu, R. Zeng, J. He, Q. Wang, Adv. Mater. 2018, 30, e1805672.
|
[25] |
A. Azizi, M. R. Gadinski, Q. Li, M. A. AlSaud, J. Wang, Y. Wang, B. Wang, F. Liu, L. Q. Chen, N. Alem, Q. Wang, Adv. Mater. 2017, 29, 1701864.
|
[26] |
J. Dong, R. Hu, X. Xu, J. Chen, Y. Niu, F. Wang, J. Hao, K. Wu, Q. Wang, H. Wang, Adv. Funct. Mater. 2021, 31, 2102644.
|
[27] |
G. Liu, Y. Feng, T. Zhang, C. Zhang, Q. Chi, Y. Zhang, Y. Zhang, Q. Lei, J. Mater. Chem. A 2021, 9, 16384.
|
[28] |
Y. Cui, Y. Feng, T. Zhang, C. Zhang, Q. Chi, Y. Zhang, X. Wang, Q. Chen, Q. Lei, ACS Appl. Mater. Interfaces 2020, 12, 56424.
|
[29] |
H. Li, M. R. Gadinski, Y. Huang, L. Ren, Y. Zhou, D. Ai, Z. Han, B. Yao, Q. Wang, Energy Environ. Sci. 2020, 13, 1279.
|
[30] |
J. Chen, Y. Wang, Q. Yuan, X. Xu, Y. Niu, Q. Wang, H. Wang, Nano Energy 2018, 54, 288.
|
[31] |
C. Yuan, Y. Zhou, Y. Zhu, J. Liang, S. Wang, S. Peng, Y. Li, S. Cheng, M. Yang, J. Hu, B. Zhang, R. Zeng, J. He, Q. Li, Nat. Commun. 2020, 11, 3919.
|
[32] |
A. A. Deshmukh, C. Wu, O. Yassin, A. Mishra, L. Chen, A. Alamri, Z. Li, J. Zhou, Z. Mutlu, M. Sotzing, P. Rajak, S. Shukla, J. Vellek, M. A. Baferani, M. Cakmak, P. Vashishta, R. Ramprasad, Y. Cao, G. Sotzing, Energy Environ. Sci. 2022, 15, 1307.
|
[33] |
Z. Dai, Z. Bao, S. Ding, C. Liu, H. Sun, H. Wang, X. Zhou, Y. Wang, Y. Yin, X. Li, Adv. Mater. 2021, 34, e2101976.
|
[34] |
B. Gao, G. Wu, J. Cao, P. Wang, Y. Luo, High Volt. Eng. 2013, 39, 2882.
|
[35] |
Q. Zhang, X. Chen, B. Zhang, T. Zhang, W. Lu, Z. Chen, Z. Liu, S. Kim, B. Donovan, R. Warzoha, E. Gomez, J. Bernholc, Q. Zhang, Matter 2021, 4, 2448.
|
[36] |
H. Li, Y. Zhou, Y. Liu, L. Li, Y. Liu, Q. Wang, Chem. Soc. Rev. 2021, 11, 6369.
|
[37] |
J. Ho, S. Greenbaum, ACS Appl. Mater. Interfaces 2018, 10, 29189.
|
[38] |
D. Ai, H. Li, Y. Zhou, L. Ren, Z. Han, B. Yao, W. Zhou, L. Zhao, J. Xu, Q. Wang, Adv. Energy Mater. 2020, 10, 1903881.
|
[39] |
W. Ren, M. Yang, L. Zhou, Y. Fan, S. He, J. Pan, T. Tang, Y. Xiao, C. Nan, Y. Shen, Adv. Mater. 2022, 34, 2207421.
|
[40] |
L. Ren, L. Yang, S. Zhang, H. Li, Y. Zhou, D. Ai, Z. Xie, X. Zhao, Z. Peng, R. Liao, Q. Wang, Compos. Sci. Technol. 2021, 201, 108528.
|
[41] |
M. O. Aijaz, M. R. Karim, H. F. Alharbi, N. H. Alharthi, Polymer 2019, 180, 121665.
|
[42] |
Y. Feng, Y. Zhou, T. Zhang, C. Zhang, Y. Zhang, Y. Zhang, Q. Chen, Q. Chi, Energy Storage Mater. 2020, 25, 180.
|
[43] |
C. Chen, J. Xing, Y. Cui, C. Zhang, Y. Feng, Y. Zhang, T. Zhang, Q. Chi, X. Wang, Q. Lei, J. Phys. Chem. C 2020, 124, 5920.
|
[44] |
M. Feng, Y. Feng, Z. Yang, T. Zhang, Q. Chi, Q. Lei, Appl. Phys. Lett. 2021, 119, 132904.
|
[45] |
S.-H. Hsiao, H.-M. Wang, P.-C. Chang, Y.-R. Kung, T.-M. Lee, J. Polym. Sci. Pol. Chem. 2013, 51, 2925.
|
[46] |
Z. Ying, W. Chen, Y. Lin, Z. He, T. Chen, Y. Zhu, X. Zhang, X. Yang, A. B. Djuri si c, Z. He, Adv. Opt. Mater. 2018, 7, 1801409.
|
[47] |
Y. Yang, J. He, G. Wu, J. Hu, Sci. Rep. 2015, 5, 16986.
|
[48] |
Y. Lin, J. Wang, Z. G. Zhang, H. Bai, Y. Li, D. Zhu, X. Zhan, Adv. Mater. 2015, 27, 1170.
|
[49] |
B. C. Thompson, J. M. Frechet, Angew. Chem. Int. Ed. Engl. 2008, 47, 58.
|
[50] |
W. Zhao, S. Li, H. Yao, S. Zhang, Y. Zhang, B. Yang, J. Hou, J. Am. Chem. Soc. 2017, 139, 7148.
|
[51] |
W. Jiang, L. Ye, X. Li, C. Xiao, F. Tan, W. Zhao, J. Hou, Z. Wang, Chem. Commun. 2014, 50, 1024.
|
[52] |
Y. Yang, Z. G. Zhang, H. Bin, S. Chen, L. Gao, L. Xue, C. Yang, Y. Li, J. Am. Chem. Soc. 2016, 138, 15011.
|
[53] |
W. Xu, J. Liu, T. Chen, X. Jiang, X. Qian, Y. Zhang, Z. Jiang, Y. Zhang, Small 2019, 15, e1901582.
|
[54] |
J. Liu, Z. Shen, W. Xu, Y. Zhang, X. Qian, Z. Jiang, Y. Zhang, Small 2020, 16, e2000714.
|
[55] |
W. Ren, J. Pan, Z. Dan, T. Zhang, J. Jiang, M. Fan, P. Hu, M. Li, Y. Lin, C. Nan, Y. Shen, Chem. Eng. J. 2021, 420, 127614.
|
[56] |
Z. Zhang, D. Wang, M. Litt, L. Tan, L. Zhu, Angew. Chem. Int. Ed. Engl. 2018, 57, 1528.
|
[57] |
C. Wu, A. Deshmukh, Z. Li, L. Chen, A. Alamri, Y. Wang, R. Ramprasad, G. Sotzing, Y. Cao, Adv. Mater. 2020, 32, 2000499.
|
[58] |
Q. Feng, D. Liu, Y. Zhang, J. Pei, S. Zhong, H. Hu, X. Wang, Z. Dang, Nano Energy 2022, 99, 107410.
|
[59] |
J. Pan, K. Li, S. Chuayprakong, T. Hsu, Q. Wang, ACS Appl. Mater. Interfaces 2010, 2, 1286.
|
/
〈 | 〉 |