![](/develop/static/imgs/pdf.png)
Sustainable Furfural Biomass Feedstocks Electrooxidation toward Value-Added Furoic Acid with Energy-Saving H2 Fuel Production Using Pt-Decorated Co3O4 Nanospheres
Talshyn Begildayeva, Jayaraman Theerthagiri, Seung Jun Lee, Ahreum Min, Gyeong-Ah Kim, Sivakumar Manickam, Myong Yong Choi
Sustainable Furfural Biomass Feedstocks Electrooxidation toward Value-Added Furoic Acid with Energy-Saving H2 Fuel Production Using Pt-Decorated Co3O4 Nanospheres
Here, furfural oxidation was performed to replace the kinetically sluggish O2 evolution reaction (OER). Pt-Co3O4 nanospheres were developed via pulsed laser ablation in liquid (PLAL) in a single step for the paired electrocatalysis of an H2 evolution reaction (HER) and furfural oxidation reaction (FOR). The FOR afforded a high furfural conversion (44.2%) with a major product of 2-furoic acid after a 2-h electrolysis at 1.55 V versus reversible hydrogen electrode in a 1.0-M KOH/50-mM furfural electrolyte. The Pt-Co3O4 electrode exhibited a small overpotential of 290 mV at 10 mA cm-2. As an anode and cathode in an electrolyzer system, the Pt-Co3O4 electrocatalyst required only a small applied cell voltage of ∼1.83 V to deliver 10 mA cm-2, compared with that of the pure water electrolyzer (OER||HER, ∼1.99 V). This study simultaneously realized the integrated production of energy-saving H2 fuel at the cathode and 2-furoic acid at the anode.
biomass conversion / electrochemical furfural oxidation / overall water splitting / Pt-Co3O4 electrocatalyst / pulsed laser ablation in liquid
[1] |
H. Liu , T.-H. Lee , Y. Chen , E. W. Cochran , W. Li , ChemElectroChem. 2021, 8, 2817.
|
[2] |
H. Mohammadi Khalfbadam , K. Y. Cheng , R. Sarukkalige , A. H. Kaksonen , A. S. Kayaalp , M. P. Ginige , Bioresour. Technol. 2016, 216, 529.
|
[3] |
J. Theerthagiri , J. Park , H. T. Das , N. Rahamathulla , E. S. F. Cardoso , A. P. Murthy , G. Maia , D. V. N. Vo , M. Y. Choi , Environ. Chem. Lett. 2022, 20, 2929.
|
[4] |
N. Jiang , X. Liu , J. Dong , B. You , X. Liu , Y. Sun , ChemNanoMat. 2017, 3, 491.
|
[5] |
Y. Yu , S. J. Lee , J. Theerthagiri , Y. Lee , M. Y. Choi , Appl. Catalysis B Environ. 2022, 316, 121603.
|
[6] |
J. Theerthagiri , S. J. Lee , A. P. Murthy , J. Madhavan , M. Y. Choi , Curr. Opinion Solid State Mater. Sci. 2020, 24, 100805.
|
[7] |
S. J. Lee , J. Theerthagiri , P. Nithyadharseni , P. Arunachalam , D. Balaji , A. Madan Kumar , J. Madhavan , V. Mittal , M., Y. Choi , Renew. Sust. Energ. Rev. 2021, 143, 110849.
|
[8] |
S. Naik Shreyanka , J. Theerthagiri , S. J. Lee , Y. Yu , M. Y. Choi , Chem. Eng. J. 2022, 446, 137045.
|
[9] |
J. Theerthagiri , A. P. Murthy , S. J. Lee , K. Karuppasamy , S. R. Arumugam , Y. Yu , M. M. Hanafiah , H.-S. Kim , V. Mittal , M. Y. Choi , Ceram. Int. 2021, 47, 4404.
|
[10] |
H. Zhang , B. Xi , Y. Gu , W. Chen , S. Xiong , Nano Res. 2021, 14, 3466.
|
[11] |
Q. Li , C. Ma , J. Di , J. Ni , Y.-C. He , Bioresource Technol. 2022, 347, 126376.
|
[12] |
T. Wang , Z. Huang , T. Liu , L. Tao , J. Tian , K. Gu , X. Wei , P. Zhou , L. Gan , S. Du , Y. Zou , R. Chen , Y. Li , X.-Z. Fu , S. Wang , Angew. Chem. Int. Ed. 2022, 61, e202115636.
|
[13] |
L. Ji , Z. Tang , D. Yang , C. Ma , Y.-C. He , Bioresource Technol. 2021, 340, 125691.
|
[14] |
W. Xu , C. Yu , J. Chen , Z. Liu , Appl. Catal. B Environ. 2022, 305, 121062.
|
[15] |
S. Liang , L. Pan , T. Thomas , B. Zhu , C. Chen , J. Zhang , H. Shen , J. Liu , M. Yang , Chem. Eng. J. 2021, 415, 128864.
|
[16] |
T. Wang , L. Tao , X. Zhu , C. Chen , W. Chen , S. Du , Y. Zhou , B. Zhou , D. Wang , C. Xie , P. Long , W. Li , Y. Wang , R. Chen , Y. Zou , X.-Z. Fu , Y. Li , X. Duan , S. Wang , Nature Catalys. 2022, 5, 66.
|
[17] |
M. Ketkaew , S. Assavapanumat , S. Klinyod , A. Kuhn , C. Wattanakit , Chem. Commun. 2022, 58, 4312.
|
[18] |
X. Zhang , M. Han , G. Liu , G. Wang , Y. Zhang , H. Zhang , H. Zhao , Appl. Catal. B Environ. 2019, 244, 899.
|
[19] |
J. Theerthagiri , S. J. Lee , K. Karuppasamy , J. Park , Y. Yu , M. L. A. Kumari , S. Chandrasekaran , H.-S. Kim , M. Y. Choi , J. Hazard. Mater. 2021, 420, 126648.
|
[20] |
J. Theerthagiri , R. A. Senthil , P. Nithyadharseni , S. J. Lee , G. Durai , P. Kuppusami , J. Madhavan , M. Y. Choi , Ceram. Int. 2020, 46, 14317.
|
[21] |
J. Theerthagiri , S. J. Lee , K. Karuppasamy , S. Arulmani , S. Veeralakshmi , M. Ashokkumar , M. Y. Choi , J. Hazard. Mater. 2021, 412, 125245.
|
[22] |
S. J. Lee , J. Theerthagiri , M. Y. Choi , Chem. Eng. J. 2021, 427, 130970.
|
[23] |
S. H. Lee , H. J. Jung , S. J. Lee , J. Theerthagiri , T. H. Kim , M. Y. Choi , Appl. Surf. Sci. 2020, 506, 145006.
|
[24] |
Y. Yu , J. Theerthagiri , S. J. Lee , G. Muthusamy , M. Ashokkumar , M. Y. Choi , Chem. Eng. J. 2021, 411, 128486.
|
[25] |
Y. Yu , S. S. Naik , Y. Oh , J. Theerthagiri , S. J. Lee , M., Y. Choi , J. Hazard. Mater. 2021, 420, 126585.
|
[26] |
S. Shankar Naik , S. J. Lee , Y. Yu , A. M. Al-Mohaimeed , J. Theerthagiri , M. Y. Choi , Mater. Lett. 2022, 308, 131218.
|
[27] |
J. Theerthagiri , K. Karuppasamy , S. J. Lee , R. Shwetharani , H.-S. Kim , S. K. K. Pasha , M. Ashokkumar , M. Y. Choi , Light Sci. Appl. 2022, 11, 250.
|
[28] |
Y. Yu , S. Jun Lee , J. Theerthagiri , S. Fonseca , L. M. C. Pinto , G. Maia , M. Yong Choi , Chem. Eng. J. 2022, 435, 134790.
|
[29] |
T. Begildayeva , S. J. Lee , Y. Yu , J. Park , T. H. Kim , J. Theerthagiri , A. Ahn , H. J. Jung , M. Y. Choi , J. Hazard. Mater. 2020, 409, 124412.
|
[30] |
T. Begildayeva , J. Theerthagiri , S. J. Lee , Y. Yu , M. Y. Choi , Small 2022, 18, 2204309.
|
[31] |
K. Zarean Mousaabadi , A. A. Ensafi , B. Rezaei , ACS Appl. Nano Mat. 2022, 5, 8097.
|
[32] |
T. Zhang , S. Zhao , C. Zhu , J. Shi , C. Su , J. Yang , M. Wang , J. Li , J. Li , P. Liu , C. Wang , Nano Res. 2022, 15, 1246.
|
[33] |
V. G. Hadjiev , M. N. Iliev , I. , V. Vergilov , J. Phys. C Solid State Phys. 1988, 21, L199.
|
[34] |
S. Farhadi , J. Safabakhsh , P. Zaringhadam , J. Nanostruct. Chem. 2013, 3, 69.
|
[35] |
J. Zhang , J. Ma , T. S. Choksi , D. Zhou , S. Han , Y.-F. Liao , H. B. Yang , D. Liu , Z. Zeng , W. Liu , X. Sun , T. Zhang , B. Liu , J. Am. Chem. Soc. 2022, 144, 2255.
|
[36] |
Z. Shi , L. Lan , Y. Li , Y. Yang , Q. Zhang , J. Wu , G. Zhang , X. Zhao , ACS Sustain. Chem. Eng. 2018, 6, 16503.
|
[37] |
Y. Li , T. Chen , S. Zhao , P. Wu , Y. Chong , A. Li , Y. Zhao , G. Chen , X. Jin , Y. Qiu , D. Ye , ACS Catal. 2022, 12, 4906.
|
[38] |
B. Paul , P. Bhanja , S. Sharma , Y. Yamauchi , Z. A. Alothman , Z.-L. Wang , R. Bal , A. Bhaumik , J. Colloid Interface Sci. 2021, 582, 322.
|
[39] |
E. I. Vovk , A. V. Kalinkin , M. Y. Smirnov , I. O. Klembovskii , V. I. Bukhtiyarov , J. Phys. Chem. C 2017, 121, 17297.
|
[40] |
Y. Takagi , H. Wang , Y. Uemura , T. Nakamura , L. Yu , O. Sekizawa , T. Uruga , M. Tada , G. Samjeské , Y. Iwasawa , T. Yokoyama , Phys. Chem. Chem. Phys. 2017, 19, 6013.
|
[41] |
Z. Ren , Y. Yang , S. Wang , X. Li , H. Feng , L. Wang , Y. Li , X. Zhang , M. Wei , Appl. Catal. B Environ. 2021, 295, 120290.
|
[42] |
L. Gong , N. Agrawal , A. Roman , A. Holewinski , M. J. Janik , J. Catal. 2019, 373, 322.
|
[43] |
T. W. van Deelen , C. Hernández Mejía , K. P. de Jong , Nature Catalys. 2019, 2, 955.
|
[44] |
Y. Wang , H. Li , Z. Yang , W. Zhang , J. Hua , J. Sep. Sci. 2017, 40, 4805.
|
[45] |
R. Latsuzbaia , R. Bisselink , A. Anastasopol , H. van der Meer , R. van Heck , M. S. Yagüe , M. Zijlstra , M. Roelands , M. Crockatt , E. Goetheer , E. Giling , J. Appl. Electrochem. 2018, 48, 611.
|
[46] |
B. V. Lyalin , V. A. Petrosyan , Russ. J. Electrochem. 2010, 46, 1199.
|
[47] |
A. J. Motheo , G. Tremiliosi-Filho , E. R. Gonzalez , K. B. Kokoh , J. M. Léger , C. Lamy , J. Appl. Electrochem. 2006, 36, 1035.
|
[48] |
Q. Tian , D. Shi , Y. Sha , Molecules 2008, 13, 948.
|
[49] |
A. Moysiadou , S. Lee , C.-S. Hsu , H. M. Chen , X. Hu , J. Am. Chem. Soc. 2020, 142, 11901.
|
[50] |
K. Liu , F. Wang , P. He , T. A. Shifa , Z. Wang , Z. Cheng , X. Zhan , J. He , Adv. Energy Mat. 2018, 8, 1703290.
|
[51] |
A. Dutta , N. Pradhan , J. Phys. Chem. Lett. 2017, 8, 144.
|
[52] |
J. Xu , J. Li , D. Xiong , B. Zhang , Y. Liu , K.-H. Wu , I. Amorim , W. Li , L. Liu , Chem. Sci. 2018, 9, 3470.
|
[53] |
J. Yang , H. Liu , W. N. Martens , R. L. Frost , J. Phys. Chem. C 2010, 114, 111.
|
[54] |
S. R. Kubota , K.-S. Choi , ACS Sustain. Chem. Eng. 2018, 6, 9596.
|
[55] |
J. Hidalgo-Carrillo , A. Marinas , F. J. Urbano , Chemistry of Furfural and Furanic Derivatives, Vol. 2, World Scientific (Europe), Singapore 2017.
|
[56] |
X. Huang , J. Song , M. Hua , B. Chen , Z. Xie , H. Liu , Z. Zhang , Q. Meng , B. Han , Chem. Sci. 2021, 12, 6342.
|
[57] |
T. Begildayeva , D. Chinnadurai , S. J. Lee , Y. Yu , J. K. Song , M., Y. Choi , J. Alloys Compd. 2022, 901, 163446.
|
[58] |
Y. Kwon , K. J. P. Schouten , J. C. van der Waal , E. de Jong , M. T. M. Koper , ACS Catal. 2016, 6, 6704.
|
[59] |
A. S. May , E. J. Biddinger , ACS Catal. 2020, 10, 3212.
|
/
〈 |
|
〉 |