Natural Lignin: A Sustainable and Cost-Effective Electrode Material for High-Temperature Na-Ion Battery
Yuqi She, Xiwei Li, Yanqin Zheng, Dong Chen, Xianhong Rui, Xuliang Lin, Yanlin Qin
Natural Lignin: A Sustainable and Cost-Effective Electrode Material for High-Temperature Na-Ion Battery
Rechargeable sodium-ion batteries usually suffer from accelerated electrode destruction at high temperatures and high synthesis costs of electrode materials. Therefore, it is highly desirable to explore novel organic electrodes considering their cost-effectiveness and large adaptability to volume changes. Herein, natural biomass, pristine lignin, is employed as the sodium-ion battery anodes, and their sodium storage performance is investigated at room temperature and 60 ℃. The lignin anodes exhibit excellent high-temperature sodium-ion battery performance. This mainly results from the generation of abundant reactive sites (C=O) due to the high temperature-induced homogeneous cleavage of the Cβ-O bond in the lignin macromolecule. This work can inspire researchers to explore other natural organic materials for large-scale applications and high-value utilization in advanced energy storage devices.
high-temperature performance / lignin / Na storage mechanism / organic anode / sodium-ion battery
[1] |
F. Wu , J. Maier , Y. Yu , Chem. Soc. Rev. 2020, 49, 1569.
|
[2] |
A. Masias , J. Marcicki , W. A. Paxton , ACS Energy Lett. 2021, 6, 621.
|
[3] |
C. M. Costa , J. C. Bärbosa , R. Goncalves , H. Castro , F. J. Del Campo , S. Lanceros-Mendez , Energy Storage Mater. 2021, 37, 433.
|
[4] |
D. Hou , D. Xia , E. Gabriel , J. A. Russell , K. Graff , Y. Ren , C.-J. Sun , F. Lin , Y. Liu , H. Xiong , ACS Energy Lett. 2021, 6, 4023.
|
[5] |
J. Song , B. Xiao , Y. Lin , K. Xu , X. Li , Adv. Energy Mater. 2018, 8, 1703082.
|
[6] |
Y. You , A. Manthiram , Adv. Energy Mater. 2018, 8, 1701785.
|
[7] |
Y. Liu , D. Wang , H. Li , P. Li , Y. Sun , Y. Liu , Y. Liu , B. Zhong , Z. Wu , X. Guo , J. Mater. Chem. A 2022, 10, 3869.
|
[8] |
T. Perveen , M. Siddiq , N. Shahzad , R. Ihsan , A. Ahmad , M. I. Shahzad , Renew. Sustain. Energy Rev. 2020, 119, 109549.
|
[9] |
Z. Xu , J. Wang , Z. Guo , F. Xie , H. Liu , H. Yadegari , M. Tebyetekerwa , M. P. Ryan , Y.-S. Hu , M.-M. Titirici , Adv. Energy Mater. 2022, 12, 2200208.
|
[10] |
Z. Geng , J. Lu , Q. Li , J. Qiu , Y. Wang , J. Peng , J. Huang , W. Li , X. Yu , H. Li , Energy Storage Mater. 2019, 23, 646.
|
[11] |
M. Waqas , S. Ali , C. Feng , D. Chen , J. Han , W. He , Small 2019, 15, 1901689.
|
[12] |
Y. Chen , C. Wang , Acc. Chem. Res. 2020, 53, 2636.
|
[13] |
Y. Xu , M. Zhou , Y. Lei , Mater. Today 2018, 21, 60.
|
[14] |
Y. Liang , C. Luo , F. Wang , S. Hou , S.-C. Liou , T. Qing , Q. Li , J. Zheng , C. Cui , C. Wang , Adv. Energy Mater. 2019, 9, 1802986.
|
[15] |
D. Huang , R. Li , P. Xu , T. Li , R. Deng , S. Chen , Q. Zhang , Chem. Eng. J. 2020, 402, 126237.
|
[16] |
W.-J. Chen , C.-X. Zhao , B.-Q. Li , T.-Q. Yuan , Q. Zhang , Green Chem. 2022, 24, 565.
|
[17] |
N. Casado , M. Hilder , C. Pozo-Gonzalo , M. Forsyth , D. Mecerreyes , ChemSusChem 2017, 10, 1783.
|
[18] |
K. Y. Nandiwale , A. M. Danby , A. Ramanathan , R. V. Chaudhari , B. Subramaniam , ACS Sustain. Chem. Eng. 2017, 5, 7155.
|
[19] |
D. Wang , Y. Wang , W. Wang , T. Li , J. Jiang , B. Xia , P. Ma , M. Chen , W. Dong , Compos. Commun. 2020, 22, 100501.
|
[20] |
S. V. Gnedenkov , D. P. Opra , S. L. Sinebryukhov , A. K. Tsvetnikov , A. Y. Ustinov , V. I. Sergienko , J. Solid State Electrochem. 2013, 17, 2611.
|
[21] |
H. Li , Q. Zhang , P. Gao , L. Wang , J. Appl. Polym. Sci. 2015, 132, 41900.
|
[22] |
Y.-M. Kim , H. W. Lee , J.-K. Jeon , S. H. Park , S.-C. Jung , I.-G. Lee , S. Kim , Y.-K. Park , Top. Catal. 2017, 60, 644.
|
[23] |
C. Gao , L. Zhou , S. Yao , C. Qin , P. Fatehi , Int. J. Biol. Macromol. 2020, 162, 1642.
|
[24] |
G. Zhang , H. Wang , X. Deng , Y. Yang , T. Zhang , J. Wang , H. Zeng , C. Wang , Y. Deng , Chem. Eng. J. 2021, 413, 127525.
|
[25] |
G. Zhang , Y. Yang , T. Zhang , D. Xu , Z. Lei , C. Wang , G. Liu , Y. Deng , Energy Storage Mater. 2020, 24, 432.
|
[26] |
F. Liu , S. Liao , H. Lin , Y. Yin , Y. Liu , H. Meng , Y. Min , ChemElectroChem 2021, 8, 2686.
|
[27] |
H. Padhy , Y. Chen , J. Luder , S. R. Gajella , S. Manzhos , P. Balaya , Adv. Energy Mater. 2018, 8, 1701572.
|
[28] |
Y. Wang , Q. Qu , G. Liu , V. S. Battaglia , H. Zheng , Nano Energy 2017, 39, 200.
|
[29] |
P. Yang , L. Ma , S. Bi , X. Xi , T. Huang , R. Liu , Y. Su , D. Wu , Chem. Eng. J. 2020, 394, 124924.
|
[30] |
T. Xia , Y. Wang , B. Wang , Z. Yang , G. Pan , L. Zhang , J. Zhang , ChemElectroChem 2019, 6, 4765.
|
[31] |
L. Wang , Q. Zhang , J. Zhu , X. Duan , Z. Xu , Y. Liu , H. Yang , B. Lu , Energy Storage Mater. 2019, 16, 37.
|
[32] |
T. Gu , M. Zhou , B. Huang , S. Cao , J. Wang , Y. Tang , K. Wang , S. Cheng , K. Jiang , Chem. Eng. J. 2019, 373, 501.
|
[33] |
Y. Su , Y. Liu , P. Liu , D. Wu , X. Zhuang , F. Zhang , X. Feng , Angew. Chem. Int. Ed. Engl. 2015, 54, 1812.
|
[34] |
Y. Chen , X. Li , K. Park , J. Song , J. Hong , L. Zhou , Y.-W. Mai , H. Huang , J. B. Goodenough , J. Am. Chem. Soc. 2013, 135, 16280.
|
[35] |
R. Guo , Y. Wang , S. Heng , G. Zhu , V. S. Battaglia , H. Zheng , J. Power Sources 2019, 436, 226848.
|
[36] |
Y. Liang , Z. Tao , J. Chen , Adv. Energy Mater. 2012, 2, 742.
|
[37] |
T. Kajita , T. Itoh , Phys. Chem. Chem. Phys. 2017, 19, 1003.
|
[38] |
J. Huang , C. Liu , D. Wu , H. Tong , L. Ren , J. Anal. Appl. Pyrol. 2014, 109, 98.
|
[39] |
B. Zhang , G. Rousse , D. Foix , R. Dugas , D. A. D. Corte , J.-M. Tarascon , Adv. Mater. 2016, 28, 9824.
|
[40] |
A. Eftekhari , Energy Storage Mater. 2017, 7, 157.
|
[41] |
V. K. Singh , Shalu , S. K. Chaurasia , R. K. Singh , RSC Adv. 2016, 6, 40199.
|
[42] |
Q. Zhang , Y. Lu , H. Yu , G. Yang , Q. Liu , Z. Wang , L. Chen , Y.-S. Hu , J. Electrochem. Soc. 2020, 167, 070523.
|
[43] |
C. Lee , W. Yang , R. G. Parr , Phys. Rev. B Condens. Matter Mater. Phys. 1988, 37, 785.
|
[44] |
F. Weigend , R. Ahlrichs , Phys. Chem. Chem. Phys. 2005, 7, 3297.
|
[45] |
E. R. Johnson , A. D. Becke , J. Chem. Phys. 2006, 124, 174104.
|
[46] |
S. Grimme , J. Comput. Chem. 2004, 25, 1463.
|
[47] |
S. Grimme , S. Ehrlich , L. Goerigk , J. Comput. Chem. 2011, 32, 1456.
|
[48] |
T. Lu , Q. Chen , Comput. Theor. Chem. 2021, 1200, 113249.
|
[49] |
T. Lu , F. Chen , J. Comput. Chem. 2012, 33, 580.
|
/
〈 | 〉 |