Natural Lignin: A Sustainable and Cost-Effective Electrode Material for High-Temperature Na-Ion Battery

Yuqi She, Xiwei Li, Yanqin Zheng, Dong Chen, Xianhong Rui, Xuliang Lin, Yanlin Qin

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (2) : 12538. DOI: 10.1002/eem2.12538
RESEARCH ARTICLE

Natural Lignin: A Sustainable and Cost-Effective Electrode Material for High-Temperature Na-Ion Battery

Author information +
History +

Abstract

Rechargeable sodium-ion batteries usually suffer from accelerated electrode destruction at high temperatures and high synthesis costs of electrode materials. Therefore, it is highly desirable to explore novel organic electrodes considering their cost-effectiveness and large adaptability to volume changes. Herein, natural biomass, pristine lignin, is employed as the sodium-ion battery anodes, and their sodium storage performance is investigated at room temperature and 60 ℃. The lignin anodes exhibit excellent high-temperature sodium-ion battery performance. This mainly results from the generation of abundant reactive sites (C=O) due to the high temperature-induced homogeneous cleavage of the Cβ-O bond in the lignin macromolecule. This work can inspire researchers to explore other natural organic materials for large-scale applications and high-value utilization in advanced energy storage devices.

Keywords

high-temperature performance / lignin / Na storage mechanism / organic anode / sodium-ion battery

Cite this article

Download citation ▾
Yuqi She, Xiwei Li, Yanqin Zheng, Dong Chen, Xianhong Rui, Xuliang Lin, Yanlin Qin. Natural Lignin: A Sustainable and Cost-Effective Electrode Material for High-Temperature Na-Ion Battery. Energy & Environmental Materials, 2024, 7(2): 12538 https://doi.org/10.1002/eem2.12538

References

[1]
F. Wu , J. Maier , Y. Yu , Chem. Soc. Rev. 2020, 49, 1569.
[2]
A. Masias , J. Marcicki , W. A. Paxton , ACS Energy Lett. 2021, 6, 621.
[3]
C. M. Costa , J. C. Bärbosa , R. Goncalves , H. Castro , F. J. Del Campo , S. Lanceros-Mendez , Energy Storage Mater. 2021, 37, 433.
[4]
D. Hou , D. Xia , E. Gabriel , J. A. Russell , K. Graff , Y. Ren , C.-J. Sun , F. Lin , Y. Liu , H. Xiong , ACS Energy Lett. 2021, 6, 4023.
[5]
J. Song , B. Xiao , Y. Lin , K. Xu , X. Li , Adv. Energy Mater. 2018, 8, 1703082.
[6]
Y. You , A. Manthiram , Adv. Energy Mater. 2018, 8, 1701785.
[7]
Y. Liu , D. Wang , H. Li , P. Li , Y. Sun , Y. Liu , Y. Liu , B. Zhong , Z. Wu , X. Guo , J. Mater. Chem. A 2022, 10, 3869.
[8]
T. Perveen , M. Siddiq , N. Shahzad , R. Ihsan , A. Ahmad , M. I. Shahzad , Renew. Sustain. Energy Rev. 2020, 119, 109549.
[9]
Z. Xu , J. Wang , Z. Guo , F. Xie , H. Liu , H. Yadegari , M. Tebyetekerwa , M. P. Ryan , Y.-S. Hu , M.-M. Titirici , Adv. Energy Mater. 2022, 12, 2200208.
[10]
Z. Geng , J. Lu , Q. Li , J. Qiu , Y. Wang , J. Peng , J. Huang , W. Li , X. Yu , H. Li , Energy Storage Mater. 2019, 23, 646.
[11]
M. Waqas , S. Ali , C. Feng , D. Chen , J. Han , W. He , Small 2019, 15, 1901689.
[12]
Y. Chen , C. Wang , Acc. Chem. Res. 2020, 53, 2636.
[13]
Y. Xu , M. Zhou , Y. Lei , Mater. Today 2018, 21, 60.
[14]
Y. Liang , C. Luo , F. Wang , S. Hou , S.-C. Liou , T. Qing , Q. Li , J. Zheng , C. Cui , C. Wang , Adv. Energy Mater. 2019, 9, 1802986.
[15]
D. Huang , R. Li , P. Xu , T. Li , R. Deng , S. Chen , Q. Zhang , Chem. Eng. J. 2020, 402, 126237.
[16]
W.-J. Chen , C.-X. Zhao , B.-Q. Li , T.-Q. Yuan , Q. Zhang , Green Chem. 2022, 24, 565.
[17]
N. Casado , M. Hilder , C. Pozo-Gonzalo , M. Forsyth , D. Mecerreyes , ChemSusChem 2017, 10, 1783.
[18]
K. Y. Nandiwale , A. M. Danby , A. Ramanathan , R. V. Chaudhari , B. Subramaniam , ACS Sustain. Chem. Eng. 2017, 5, 7155.
[19]
D. Wang , Y. Wang , W. Wang , T. Li , J. Jiang , B. Xia , P. Ma , M. Chen , W. Dong , Compos. Commun. 2020, 22, 100501.
[20]
S. V. Gnedenkov , D. P. Opra , S. L. Sinebryukhov , A. K. Tsvetnikov , A. Y. Ustinov , V. I. Sergienko , J. Solid State Electrochem. 2013, 17, 2611.
[21]
H. Li , Q. Zhang , P. Gao , L. Wang , J. Appl. Polym. Sci. 2015, 132, 41900.
[22]
Y.-M. Kim , H. W. Lee , J.-K. Jeon , S. H. Park , S.-C. Jung , I.-G. Lee , S. Kim , Y.-K. Park , Top. Catal. 2017, 60, 644.
[23]
C. Gao , L. Zhou , S. Yao , C. Qin , P. Fatehi , Int. J. Biol. Macromol. 2020, 162, 1642.
[24]
G. Zhang , H. Wang , X. Deng , Y. Yang , T. Zhang , J. Wang , H. Zeng , C. Wang , Y. Deng , Chem. Eng. J. 2021, 413, 127525.
[25]
G. Zhang , Y. Yang , T. Zhang , D. Xu , Z. Lei , C. Wang , G. Liu , Y. Deng , Energy Storage Mater. 2020, 24, 432.
[26]
F. Liu , S. Liao , H. Lin , Y. Yin , Y. Liu , H. Meng , Y. Min , ChemElectroChem 2021, 8, 2686.
[27]
H. Padhy , Y. Chen , J. Luder , S. R. Gajella , S. Manzhos , P. Balaya , Adv. Energy Mater. 2018, 8, 1701572.
[28]
Y. Wang , Q. Qu , G. Liu , V. S. Battaglia , H. Zheng , Nano Energy 2017, 39, 200.
[29]
P. Yang , L. Ma , S. Bi , X. Xi , T. Huang , R. Liu , Y. Su , D. Wu , Chem. Eng. J. 2020, 394, 124924.
[30]
T. Xia , Y. Wang , B. Wang , Z. Yang , G. Pan , L. Zhang , J. Zhang , ChemElectroChem 2019, 6, 4765.
[31]
L. Wang , Q. Zhang , J. Zhu , X. Duan , Z. Xu , Y. Liu , H. Yang , B. Lu , Energy Storage Mater. 2019, 16, 37.
[32]
T. Gu , M. Zhou , B. Huang , S. Cao , J. Wang , Y. Tang , K. Wang , S. Cheng , K. Jiang , Chem. Eng. J. 2019, 373, 501.
[33]
Y. Su , Y. Liu , P. Liu , D. Wu , X. Zhuang , F. Zhang , X. Feng , Angew. Chem. Int. Ed. Engl. 2015, 54, 1812.
[34]
Y. Chen , X. Li , K. Park , J. Song , J. Hong , L. Zhou , Y.-W. Mai , H. Huang , J. B. Goodenough , J. Am. Chem. Soc. 2013, 135, 16280.
[35]
R. Guo , Y. Wang , S. Heng , G. Zhu , V. S. Battaglia , H. Zheng , J. Power Sources 2019, 436, 226848.
[36]
Y. Liang , Z. Tao , J. Chen , Adv. Energy Mater. 2012, 2, 742.
[37]
T. Kajita , T. Itoh , Phys. Chem. Chem. Phys. 2017, 19, 1003.
[38]
J. Huang , C. Liu , D. Wu , H. Tong , L. Ren , J. Anal. Appl. Pyrol. 2014, 109, 98.
[39]
B. Zhang , G. Rousse , D. Foix , R. Dugas , D. A. D. Corte , J.-M. Tarascon , Adv. Mater. 2016, 28, 9824.
[40]
A. Eftekhari , Energy Storage Mater. 2017, 7, 157.
[41]
V. K. Singh , Shalu , S. K. Chaurasia , R. K. Singh , RSC Adv. 2016, 6, 40199.
[42]
Q. Zhang , Y. Lu , H. Yu , G. Yang , Q. Liu , Z. Wang , L. Chen , Y.-S. Hu , J. Electrochem. Soc. 2020, 167, 070523.
[43]
C. Lee , W. Yang , R. G. Parr , Phys. Rev. B Condens. Matter Mater. Phys. 1988, 37, 785.
[44]
F. Weigend , R. Ahlrichs , Phys. Chem. Chem. Phys. 2005, 7, 3297.
[45]
E. R. Johnson , A. D. Becke , J. Chem. Phys. 2006, 124, 174104.
[46]
S. Grimme , J. Comput. Chem. 2004, 25, 1463.
[47]
S. Grimme , S. Ehrlich , L. Goerigk , J. Comput. Chem. 2011, 32, 1456.
[48]
T. Lu , Q. Chen , Comput. Theor. Chem. 2021, 1200, 113249.
[49]
T. Lu , F. Chen , J. Comput. Chem. 2012, 33, 580.

RIGHTS & PERMISSIONS

2022 2022 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
PDF

Accesses

Citations

Detail

Sections
Recommended

/