Ion Dynamics in Concentrated Electrolyte Solutions: Relating Equilibrium Fluctuations of the Ions to Transport Properties in Battery Cells
Bernhard Roling, Vanessa Miβ, Janosch Kettner
Ion Dynamics in Concentrated Electrolyte Solutions: Relating Equilibrium Fluctuations of the Ions to Transport Properties in Battery Cells
In recent years, the interest in the development of highly concentrated electrolyte solutions for battery applications has increased enormously. Such electrolyte solutions are typically characterized by a low flammability, a high thermal and electrochemical stability and by the formation of a stable solid electrolyte interphase (SEI) in contact to electrode materials. However, the classification of concentrated electrolyte solutions in terms of the classical scheme “strong” or “weak” has been controversially discussed in the literature. In this paper, a comprehensive theoretical framework is presented for a more general classification, which is based on a comparison of charge transport and mass transport. By combining the Onsager transport formalism with linear response theory, center-of-mass fluctuations and collective translational dipole fluctuations of the ions in equilibrium are related to transport properties in a lithium-ion battery cell, namely mass transport, charge transport and Li+ transport under anion-blocking conditions. The relevance of the classification approach is substantiated by showing that i) it is straightforward to classify highly concentrated electrolytes and that ii) both fast charge transport and fast mass transport are indispensable for achieving fast Li+ transport under anion-blocking conditions.
batteries / concentrated electrolytes / linear response theory / Onsager formalism / transport
[1] |
Z. Cao, M. Hashinokuchi, T. Doi, M. Inaba, J. Electrochem. Soc. 2019, 166, A82.
|
[2] |
Y. Jie, X. Ren, R. Cao, W. Cai, S. Jiao, Adv. Funct. Mater. 2020, 30, 1910777.
|
[3] |
S. Ko, Y. Yamada, A. Yamada, Batteries Supercaps 2020, 3, 910.
|
[4] |
S. Perez Beltran, X. Cao, J.-G. Zhang, P. B. Balbuena, Chem. Mater. 2020, 32, 5973.
|
[5] |
G. Jiang, F. Li, H. Wang, M. Wu, S. Qi, X. Liu, S. Yang, J. Ma, Small Struct. 2021, 2, 2000122.
|
[6] |
X. Cao, H. Jia, W. Xu, J.-G. Zhang, J. Electrochem. Soc. 2021, 168, 10522.
|
[7] |
X. Ou, D. Gong, C. Han, Z. Liu, Y. Tang, Adv. Energy Mater. 2021, 11, 2102498.
|
[8] |
K. Dokko, D. Watanabe, Y. Ugata, M. L. Thomas, S. Tsuzuki, W. Shinoda, K. Hashimoto, K. Ueno, Y. Umebayashi, M. Watanabe, J. Phys. Chem. B 2018, 122, 10736.
|
[9] |
A. Nakanishi, K. Ueno, D. Watanabe, Y. Ugata, Y. Matsumae, J. Liu, M. L. Thomas, K. Dokko, M. Watanabe, J. Phys. Chem. C 2019, 123, 14229.
|
[10] |
Y. Ugata, S. Sasagawa, R. Tatara, K. Ueno, M. Watanabe, K. Dokko, J. Phys. Chem. B 2021, 125, 6600.
|
[11] |
Y. Ugata, K. Shigenobu, R. Tatara, K. Ueno, M. Watanabe, K. Dokko, Phys. Chem. Chem. Phys. 2021, 23, 21419.
|
[12] |
M. Watanabe, K. Dokko, K. Ueno, M. L. Thomas, Bull. Chem. Soc. Jpn. 2018, 91, 1660.
|
[13] |
T. Mandai, K. Yoshida, K. Ueno, K. Dokko, M. Watanabe, Phys. Chem. Chem. Phys. 2014, 16, 8761.
|
[14] |
L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho, X. Fan, C. Luo, C. Wang, K. Xu, Science (New York, N.Y.) 2015, 350, 938.
|
[15] |
V. A. Azov, K. S. Egorova, M. M. Seitkalieva, A. S. Kashin, V. P. Ananikov, Chem. Soc. Rev. 2018, 47, 1250.
|
[16] |
L. Chen, J. Zhang, Q. Li, J. Vatamanu, X. Ji, T. P. Pollard, C. Cui, S. Hou, J. Chen, C. Yang, L. Ma, M. S. Ding, M. Garaga, S. Greenbaum, H.-S. Lee, O. Borodin, K. Xu, C. Wang, ACS Energy Lett. 2020, 5, 968.
|
[17] |
J. Zheng, S. Chen, W. Zhao, J. Song, M. H. Engelhard, J.-G. Zhang, ACS Energy Lett. 2018, 3, 315.
|
[18] |
Y. Yamada, J. Wang, S. Ko, E. Watanabe, A. Yamada, Nat. Energy 2019, 4, 269.
|
[19] |
S. Lin, H. Hua, Z. Li, J. Zhao, ACS Appl. Mater. Interfaces 2020, 12, 33710.
|
[20] |
T. Li, X.-Q. Zhang, N. Yao, Y.-X. Yao, L.-P. Hou, X. Chen, M.-Y. Zhou, J.- Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. Engl. 2021, 133, 22865.
|
[21] |
T. T. Hagos, B. Thirumalraj, C.-J. Huang, L. H. Abrha, T. M. Hagos, G. B. Berhe, H. K. Bezabh, J. Cherng, S.-F. Chiu, W.-N. Su, B.-J. Hwang, ACS Appl. Mater. Interfaces 2019, 11, 9955.
|
[22] |
H. J. Schoenert, J. Phys. Chem. 1984, 88, 3359.
|
[23] |
D. G. Miller, J. Phys. Chem. 1981, 85, 1137.
|
[24] |
J.-F. Dufrêche, O. Bernard, P. Turq, J. Chem. Phys. 2002, 116, 2085.
|
[25] |
D. C. Douglass, H. L. Frisch, J. Phys. Chem. 1969, 73, 3039.
|
[26] |
Y. Ma, M. Doyle, T. F. Fuller, M. M. Doeff, L. C. de Jonghe, J. Newman, J. Electrochem. Soc. 1995, 142, 1859.
|
[27] |
M. A. Gebbie, A. M. Smith, H. A. Dobbs, A. A. Lee, G. G. Warr, X. Banquy, M. Valtiner, M. W. Rutland, J. N. Israelachvili, S. Perkin, R. Atkin, Chem. Commun. 2017, 53, 1214.
|
[28] |
K. R. Harris, J. Phys. Chem. B 2019, 123, 7014.
|
[29] |
M. Watanabe, Electrochemistry 2016, 84, 642.
|
[30] |
Y. Wang, W. Chen, Q. Zhao, G. Jin, Z. Xue, Y. Wang, T. Mu, Phys. Chem. Chem. Phys. 2020, 22, 25760.
|
[31] |
O. Nordness, J. F. Brennecke, Chem. Rev. 2020, 120, 12873.
|
[32] |
A. A. Lee, D. Vella, S. Perkin, A. Goriely, J. Phys. Chem. Lett. 2015, 6, 159.
|
[33] |
B. Roling, J. Kettner, V. Miß, Energy Environ. Mater 2022, 5, 6.
|
[34] |
N. M. Vargas-Barbosa, B. Roling, ChemElectroChem 2020, 7, 367.
|
[35] |
B. Roling, C. Martiny, S. Brückner, Phys. Rev. B 2001, 63, 214203.
|
[36] |
C. Schröder, J. Chem. Phys. 2011, 135, 24502.
|
[37] |
V. Zeindlhofer, L. Zehetner, W. Paschinger, A. Bismarck, C. Schröder, J. Mol. Liq. 2019, 288, 110993.
|
[38] |
N. Bjerrum, Kgl. Danske Videnskab Selskab 1926, 7, 9.
|
[39] |
S. Zugmann, M. Fleischmann, M. Amereller, R. M. Gschwind, H. D. Wiemhöfer, H. J. Gores, Electrochim. Acta 2011, 56, 3926.
|
[40] |
M. Maiti, A. N. Krishnamoorthy, Y. Mabrouk, D. Diddens, A. Heuer, to be published.
|
[41] |
Z. Li, R. Bouchal, T. Mendez-Morales, A.-L. Rollet, C. Rizzi, S. Le Vot, F. Favier, B. Rotenberg, O. Borodin, O. Fontaine, M. Salanne, J. Phys. Chem. B 2019, 123, 10514.
|
[42] |
D. Dong, D. Bedrov, J. Phys. Chem. B 2018, 122, 9994.
|
[43] |
S. Pfeifer, F. Ackermann, F. Sälzer, M. Schönhoff, B. Roling, Phys. Chem. Chem. Phys. 2021, 23, 628.
|
[44] |
K. Shigenobu, K. Dokko, M. Watanabe, K. Ueno, Phys. Chem. Chem. Phys. 2020, 22, 15214.
|
[45] |
K. Shigenobu, M. Shibata, K. Dokko, M. Watanabe, K. Fujii, K. Ueno, Phys. Chem. Chem. Phys. 2021, 23, 2622.
|
/
〈 | 〉 |