Accelerated Sequential Deposition Reaction via Crystal Orientation Engineering for Low-Temperature, High-Efficiency Carbon-Electrode CsPbBr3 Solar Cells
Zeyang Zhang, Weidong Zhu, Tianjiao Han, Tianran Wang, Wenming Chai, Jiaduo Zhu, He Xi, Dazheng Chen, Gang Lu, Peng Dong, Jincheng Zhang, Chunfu Zhang, Yue Hao
Accelerated Sequential Deposition Reaction via Crystal Orientation Engineering for Low-Temperature, High-Efficiency Carbon-Electrode CsPbBr3 Solar Cells
Low-temperature, ambient processing of high-quality CsPbBr3 films is demanded for scalable production of efficient, low-cost carbon-electrode perovskite solar cells (PSCs). Herein, we demonstrate a crystal orientation engineering strategy of PbBr2 precursor film to accelerate its reaction with CsBr precursor during two-step sequential deposition of CsPbBr3 films. Such a novel strategy is proceeded by adding CsBr species into PbBr2 precursor, which can tailor the preferred crystal orientation of PbBr2 film from [020] into [031], with CsBr additive staying in the film as CsPb2Br5 phase. Theoretical calculations show that the reaction energy barrier of (031) planes of PbBr2 with CsBr is lower about 2.28 eV than that of (020) planes. Therefore, CsPbBr3 films with full coverage, high purity, high crystallinity, micro-sized grains can be obtained at a low temperature of 150 °C. Carbon-electrode PSCs with these desired CsPbBr3 films yield the record-high efficiency of 10.27% coupled with excellent operation stability. Meanwhile, the 1 cm2 area one with the superior efficiency of 8.00% as well as the flexible one with the champion efficiency of 8.27% and excellent mechanical bending characteristics are also achieved.
carbon-electrode perovskite solar cells / crystal orientation engineering / CsPbBr3 / low temperature / two-step sequential deposition
[1] |
Y. Rong, Y. Hu, A. Mei, H. Tan, M. I. Saidaminov, S. I. Seok, Y.-K. Kim, M. D. McGehee, E. H. Sargent, H. Han, Science 2018, 361, eaat8235.
|
[2] |
J. J. Yoo, G. Seo, M. R. Chua, T. G. Park, Y. Lu, F. Rotermund, Y.-K. Kim, C. S. Moon, N. J. Jeon, J.-P. Correa-Baena, Nature 2021, 590, 587.
|
[3] |
J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T. Eickemeyer, M. Kim, Nature 2021, 592, 381.
|
[4] |
M. I. Hossain, A. M. Saleque, S. Ahmed, I. Saidjafarzoda, M. Shahiduzzaman, W. Qarony, D. Knipp, N. Biyikli, Y. H. Tsang, Nano Energy 2021, 79, 105400.
|
[5] |
M. Kim, J. Jeong, H. Lu, T. K. Lee, F. T. Eickemeyer, Y. Liu, I. W. Choi, S. J. Choi, Y. Jo, H.-B. Kim, Science 2022, 375, 302.
|
[6] |
M. A. Green, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, A. W. Ho-Baillie, Prog. Photovolt. 2017, 25, 668.
|
[7] |
N. Li, X. Niu, Q. Chen, H. Zhou, Chem. Soc. Rev. 2020, 49, 8235.
|
[8] |
M. Wu, N. Haji Ladi, Z. Yi, H. Li, Y. Shen, M. Wang, Energ. Technol. 2020, 8, 1900744.
|
[9] |
S. Zhang, Z. Liu, W. Zhang, Z. Jiang, W. Chen, R. Chen, Y. Huang, Z. Yang, Y. Zhang, L. Han, Adv. Energy Mater. 2020, 10, 2001610.
|
[10] |
S. P. Dunfield, L. Bliss, F. Zhang, J. M. Luther, K. Zhu, M. F. van Hest, M. O. Reese, J. J. Berry, Adv. Energy Mater. 2020, 10, 1904054.
|
[11] |
J. Wei, Q. Wang, J. Huo, F. Gao, Z. Gan, Q. Zhao, H. Li, Adv. Energy Mater. 2021, 11, 2002326.
|
[12] |
N. A. N. Ouedraogo, Y. Chen, Y. Y. Xiao, Q. Meng, C. B. Han, H. Yan, Y. Zhang, Nano Energy 2020, 67, 104249.
|
[13] |
M. B. Faheem, B. Khan, C. Feng, M. U. Farooq, F. Raziq, Y. Xiao, Y. Li, ACS Energy Lett. 2019, 5, 290.
|
[14] |
J. Tian, Q. Xue, Q. Yao, N. Li, C. J. Brabec, H. L. Yip, Adv. Energy Mater. 2020, 10, 2000183.
|
[15] |
G. Tong, T. Chen, H. Li, L. Qiu, Z. Liu, Y. Dang, W. Song, L. K. Ono, Y. Jiang, Y. Qi, Nano Energy 2019, 65, 104015.
|
[16] |
J. Duan, Y. Zhao, B. He, Q. Tang, Angew. Chem. 2018, 130, 3849.
|
[17] |
N. Kumar, J. Rani, R. Kurchania, Sol. Energy 2021, 221, 197.
|
[18] |
J. Feng, X. Han, H. Huang, Q. Meng, Z. Zhu, T. Yu, Z. Li, Z. Zou, Sci. Bull. 2020, 65, 726.
|
[19] |
X. Liu, X. Tan, Z. Liu, H. Ye, B. Sun, T. Shi, Z. Tang, G. Liao, Nano Energy 2019, 56, 184.
|
[20] |
X. Wan, Z. Yu, W. Tian, F. Huang, S. Jin, X. Yang, Y.-B. Cheng, A. Hagfeldt, L. Sun, J. Energy Chem. 2020, 46, 8.
|
[21] |
T. Zhang, M. Yang, Y. Zhao, K. Zhu, Nano Lett. 2015, 15, 3959.
|
[22] |
A. Ummadisingu, M. Grätzel, Sci. Adv. 2018, 4, e1701402.
|
[23] |
J. Zhu, B. He, X. Yao, H. Chen, Y. Duan, J. Duan, Q. Tang, Small 2022, 18, 2106323.
|
[24] |
X. Cao, G. Zhang, L. Jiang, Y. Cai, Y. Gao, W. Yang, X. He, Q. Zeng, G. Xing, Y. Jia, ACS Appl. Mater. Interfaces 2019, 12, 5925.
|
[25] |
X. Yao, B. He, J. Zhu, J. Ti, L. Cui, R. Tui, M. Wei, H. Chen, J. Duan, Y. Duan, Nano Energy 2022, 96, 107138.
|
[26] |
S. Ullah, J. Wang, P. Yang, L. Liu, S.-E. Yang, T. Xia, H. Guo, Y. Chen, Mater. Adv. 2021, 2, 646.
|
[27] |
J. Duan, M. Wang, Y. Wang, J. Zhang, Q. Guo, Q. Zhang, Y. Duan, Q. Tang, ACS Energy Lett. 2021, 6, 2336.
|
[28] |
X. Li, Y. Tan, H. Lai, S. Li, Y. Chen, S. Li, P. Xu, J. Yang, ACS Appl. Mater. Interfaces 2019, 11, 29746.
|
[29] |
Q. Zhou, J. Duan, J. Du, Q. Guo, Q. Zhang, X. Yang, Y. Duan, Q. Tang, Adv. Sci. 2021, 8, 2101418.
|
[30] |
G. Tong, L. K. Ono, Y. Qi, Energ. Technol. 2020, 8, 1900961.
|
[31] |
K. C. Tang, P. You, F. Yan, Sol. RRL 2018, 2, 1800075.
|
[32] |
S. H. Reddy, F. Di Giacomo, A. Di Carlo, Adv. Energy Mater. 2022, 12, 2103534.
|
[33] |
X. Han, X. Wang, J. Feng, H. Huang, Z. Zhu, T. Yu, Z. Li, Z. Zou, ACS Appl. Electron. Mater. 2021, 3, 373.
|
[34] |
J. Peng, C. Q. Xia, Y. Xu, R. Li, L. Cui, J. K. Clegg, L. M. Herz, M. B. Johnston, Q. Lin, Nat. Commun. 2021,
CrossRef
Google scholar
|
[35] |
F. Bertolotti, L. Protesescu, M. V. Kovalenko, S. Yakunin, A. Cervellino, S. J. L. Billinge, M. W. Terban, J. S. Pedersen, N. Masciocchi, A. Guagliardi, ACS Nano 2017, 11, 3819.
|
[36] |
H. Ko, D. H. Sin, M. Kim, K. Cho, Chem. Mater. 2017, 29, 1165.
|
[37] |
Z. Zhang, Y. Ba, D. Chen, J. Ma, W. Zhu, H. Xi, D. Chen, J. Zhang, C. Zhang, Y. Hao, iScience 2021, 24, 103365.
|
[38] |
J. Zeng, X. Li, Y. Wu, D. Yang, Z. Sun, Z. Song, H. Wang, H. Zeng, Adv. Funct. Mater. 2018, 28, 1804394.
|
[39] |
H. Zhao, S. Yang, Y. Han, S. Yuan, H. Jiang, C. Duan, Z. Liu, S. Liu, Adv. Mater. Technol. 2019, 4, 1900311.
|
[40] |
J. Maes, L. Balcaen, E. Drijvers, Q. Zhao, J. De Roo, A. Vantomme, F. Vanhaecke, P. Geiregat, Z. Hens, J. Phys. Chem. Lett. 2018, 9, 3093.
|
[41] |
X. Zhang, Z. Jin, J. Zhang, D. Bai, H. Bian, K. Wang, J. Sun, Q. Wang, S. F. Liu, ACS Appl. Mater. Interfaces 2018, 10, 7145.
|
[42] |
I. Poli, J. Baker, J. McGettrick, F. De Rossi, S. Eslava, T. Watson, P. J. Cameron, J. Mater. Chem. A 2018, 6, 18677.
|
[43] |
N. Thongprong, T. Supasai, Y. Li, I.-M. Tang, N. Rujisamphan, Energ. Technol. 2020, 8, 1901196.
|
[44] |
P. Caprioglio, M. Stolterfoht, C. M. Wolff, T. Unold, B. Rech, S. Albrecht, D. Neher, Adv. Energy Mater. 2019, 9, 1901631.
|
[45] |
W. Tress, M. Yavari, K. Domanski, P. Yadav, B. Niesen, J. P. C. Baena, A. Hagfeldt, M. Graetzel, Energy Environ. Sci. 2018, 11, 151.
|
[46] |
Z. Zhang, D. Chen, W. Zhu, J. Ma, W. Chai, D. Chen, J. Zhang, C. Zhang, Y. Hao, Sci. China Mater. 2021, 64, 2107.
|
[47] |
W. Zhu, Q. Zhang, D. Chen, Z. Zhang, Z. Lin, J. Chang, J. Zhang, C. Zhang, Y. Hao, Adv. Energy Mater. 2018, 8, 1802080.
|
[48] |
X.-G. Zhang, S. T. Pantelides, Phys. Rev. Lett. 2012, 108, 266602.
|
[49] |
V. M. Le Corre, E. A. Duijnstee, O. El Tambouli, J. M. Ball, H. J. Snaith, J. Lim, L. J. A. Koster, ACS Energy Lett. 2021, 6, 1087.
|
[50] |
Y. Xu, J. Duan, J. Du, X. Yang, Y. Duan, Q. Tang, ChemSusChem 2021, 14, 1512.
|
[51] |
Y. Tan, B. Xiao, P. Xu, Y. Luo, Q. Jiang, J. Yang, ACS Appl. Mater. Interfaces 2021, 13, 20034.
|
[52] |
S. Smidstrup, T. Markussen, P. Vancraeyveld, J. Wellendorff, J. Schneider, T. Gunst, B. Verstichel, D. Stradi, P. A. Khomyakov, U. G. Vej-Hansen, J. Phys. Condens. Matter 2019, 32, 015901.
|
[53] |
S. Grimme, J. Comput. Chem. 2006, 27, 1787.
|
[54] |
G. Henkelman, H. Jónsson, J. Chem. Phys. 2000, 113, 9978.
|
/
〈 | 〉 |