Accelerated Sequential Deposition Reaction via Crystal Orientation Engineering for Low-Temperature, High-Efficiency Carbon-Electrode CsPbBr3 Solar Cells

Zeyang Zhang, Weidong Zhu, Tianjiao Han, Tianran Wang, Wenming Chai, Jiaduo Zhu, He Xi, Dazheng Chen, Gang Lu, Peng Dong, Jincheng Zhang, Chunfu Zhang, Yue Hao

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (1) : 12524. DOI: 10.1002/eem2.12524
RESEARCH ARTICLE

Accelerated Sequential Deposition Reaction via Crystal Orientation Engineering for Low-Temperature, High-Efficiency Carbon-Electrode CsPbBr3 Solar Cells

Author information +
History +

Abstract

Low-temperature, ambient processing of high-quality CsPbBr3 films is demanded for scalable production of efficient, low-cost carbon-electrode perovskite solar cells (PSCs). Herein, we demonstrate a crystal orientation engineering strategy of PbBr2 precursor film to accelerate its reaction with CsBr precursor during two-step sequential deposition of CsPbBr3 films. Such a novel strategy is proceeded by adding CsBr species into PbBr2 precursor, which can tailor the preferred crystal orientation of PbBr2 film from [020] into [031], with CsBr additive staying in the film as CsPb2Br5 phase. Theoretical calculations show that the reaction energy barrier of (031) planes of PbBr2 with CsBr is lower about 2.28 eV than that of (020) planes. Therefore, CsPbBr3 films with full coverage, high purity, high crystallinity, micro-sized grains can be obtained at a low temperature of 150 °C. Carbon-electrode PSCs with these desired CsPbBr3 films yield the record-high efficiency of 10.27% coupled with excellent operation stability. Meanwhile, the 1 cm2 area one with the superior efficiency of 8.00% as well as the flexible one with the champion efficiency of 8.27% and excellent mechanical bending characteristics are also achieved.

Keywords

carbon-electrode perovskite solar cells / crystal orientation engineering / CsPbBr3 / low temperature / two-step sequential deposition

Cite this article

Download citation ▾
Zeyang Zhang, Weidong Zhu, Tianjiao Han, Tianran Wang, Wenming Chai, Jiaduo Zhu, He Xi, Dazheng Chen, Gang Lu, Peng Dong, Jincheng Zhang, Chunfu Zhang, Yue Hao. Accelerated Sequential Deposition Reaction via Crystal Orientation Engineering for Low-Temperature, High-Efficiency Carbon-Electrode CsPbBr3 Solar Cells. Energy & Environmental Materials, 2024, 7(1): 12524 https://doi.org/10.1002/eem2.12524

References

[1]
Y. Rong, Y. Hu, A. Mei, H. Tan, M. I. Saidaminov, S. I. Seok, Y.-K. Kim, M. D. McGehee, E. H. Sargent, H. Han, Science 2018, 361, eaat8235.
[2]
J. J. Yoo, G. Seo, M. R. Chua, T. G. Park, Y. Lu, F. Rotermund, Y.-K. Kim, C. S. Moon, N. J. Jeon, J.-P. Correa-Baena, Nature 2021, 590, 587.
[3]
J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T. Eickemeyer, M. Kim, Nature 2021, 592, 381.
[4]
M. I. Hossain, A. M. Saleque, S. Ahmed, I. Saidjafarzoda, M. Shahiduzzaman, W. Qarony, D. Knipp, N. Biyikli, Y. H. Tsang, Nano Energy 2021, 79, 105400.
[5]
M. Kim, J. Jeong, H. Lu, T. K. Lee, F. T. Eickemeyer, Y. Liu, I. W. Choi, S. J. Choi, Y. Jo, H.-B. Kim, Science 2022, 375, 302.
[6]
M. A. Green, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, A. W. Ho-Baillie, Prog. Photovolt. 2017, 25, 668.
[7]
N. Li, X. Niu, Q. Chen, H. Zhou, Chem. Soc. Rev. 2020, 49, 8235.
[8]
M. Wu, N. Haji Ladi, Z. Yi, H. Li, Y. Shen, M. Wang, Energ. Technol. 2020, 8, 1900744.
[9]
S. Zhang, Z. Liu, W. Zhang, Z. Jiang, W. Chen, R. Chen, Y. Huang, Z. Yang, Y. Zhang, L. Han, Adv. Energy Mater. 2020, 10, 2001610.
[10]
S. P. Dunfield, L. Bliss, F. Zhang, J. M. Luther, K. Zhu, M. F. van Hest, M. O. Reese, J. J. Berry, Adv. Energy Mater. 2020, 10, 1904054.
[11]
J. Wei, Q. Wang, J. Huo, F. Gao, Z. Gan, Q. Zhao, H. Li, Adv. Energy Mater. 2021, 11, 2002326.
[12]
N. A. N. Ouedraogo, Y. Chen, Y. Y. Xiao, Q. Meng, C. B. Han, H. Yan, Y. Zhang, Nano Energy 2020, 67, 104249.
[13]
M. B. Faheem, B. Khan, C. Feng, M. U. Farooq, F. Raziq, Y. Xiao, Y. Li, ACS Energy Lett. 2019, 5, 290.
[14]
J. Tian, Q. Xue, Q. Yao, N. Li, C. J. Brabec, H. L. Yip, Adv. Energy Mater. 2020, 10, 2000183.
[15]
G. Tong, T. Chen, H. Li, L. Qiu, Z. Liu, Y. Dang, W. Song, L. K. Ono, Y. Jiang, Y. Qi, Nano Energy 2019, 65, 104015.
[16]
J. Duan, Y. Zhao, B. He, Q. Tang, Angew. Chem. 2018, 130, 3849.
[17]
N. Kumar, J. Rani, R. Kurchania, Sol. Energy 2021, 221, 197.
[18]
J. Feng, X. Han, H. Huang, Q. Meng, Z. Zhu, T. Yu, Z. Li, Z. Zou, Sci. Bull. 2020, 65, 726.
[19]
X. Liu, X. Tan, Z. Liu, H. Ye, B. Sun, T. Shi, Z. Tang, G. Liao, Nano Energy 2019, 56, 184.
[20]
X. Wan, Z. Yu, W. Tian, F. Huang, S. Jin, X. Yang, Y.-B. Cheng, A. Hagfeldt, L. Sun, J. Energy Chem. 2020, 46, 8.
[21]
T. Zhang, M. Yang, Y. Zhao, K. Zhu, Nano Lett. 2015, 15, 3959.
[22]
A. Ummadisingu, M. Grätzel, Sci. Adv. 2018, 4, e1701402.
[23]
J. Zhu, B. He, X. Yao, H. Chen, Y. Duan, J. Duan, Q. Tang, Small 2022, 18, 2106323.
[24]
X. Cao, G. Zhang, L. Jiang, Y. Cai, Y. Gao, W. Yang, X. He, Q. Zeng, G. Xing, Y. Jia, ACS Appl. Mater. Interfaces 2019, 12, 5925.
[25]
X. Yao, B. He, J. Zhu, J. Ti, L. Cui, R. Tui, M. Wei, H. Chen, J. Duan, Y. Duan, Nano Energy 2022, 96, 107138.
[26]
S. Ullah, J. Wang, P. Yang, L. Liu, S.-E. Yang, T. Xia, H. Guo, Y. Chen, Mater. Adv. 2021, 2, 646.
[27]
J. Duan, M. Wang, Y. Wang, J. Zhang, Q. Guo, Q. Zhang, Y. Duan, Q. Tang, ACS Energy Lett. 2021, 6, 2336.
[28]
X. Li, Y. Tan, H. Lai, S. Li, Y. Chen, S. Li, P. Xu, J. Yang, ACS Appl. Mater. Interfaces 2019, 11, 29746.
[29]
Q. Zhou, J. Duan, J. Du, Q. Guo, Q. Zhang, X. Yang, Y. Duan, Q. Tang, Adv. Sci. 2021, 8, 2101418.
[30]
G. Tong, L. K. Ono, Y. Qi, Energ. Technol. 2020, 8, 1900961.
[31]
K. C. Tang, P. You, F. Yan, Sol. RRL 2018, 2, 1800075.
[32]
S. H. Reddy, F. Di Giacomo, A. Di Carlo, Adv. Energy Mater. 2022, 12, 2103534.
[33]
X. Han, X. Wang, J. Feng, H. Huang, Z. Zhu, T. Yu, Z. Li, Z. Zou, ACS Appl. Electron. Mater. 2021, 3, 373.
[34]
J. Peng, C. Q. Xia, Y. Xu, R. Li, L. Cui, J. K. Clegg, L. M. Herz, M. B. Johnston, Q. Lin, Nat. Commun. 2021,
CrossRef Google scholar
[35]
F. Bertolotti, L. Protesescu, M. V. Kovalenko, S. Yakunin, A. Cervellino, S. J. L. Billinge, M. W. Terban, J. S. Pedersen, N. Masciocchi, A. Guagliardi, ACS Nano 2017, 11, 3819.
[36]
H. Ko, D. H. Sin, M. Kim, K. Cho, Chem. Mater. 2017, 29, 1165.
[37]
Z. Zhang, Y. Ba, D. Chen, J. Ma, W. Zhu, H. Xi, D. Chen, J. Zhang, C. Zhang, Y. Hao, iScience 2021, 24, 103365.
[38]
J. Zeng, X. Li, Y. Wu, D. Yang, Z. Sun, Z. Song, H. Wang, H. Zeng, Adv. Funct. Mater. 2018, 28, 1804394.
[39]
H. Zhao, S. Yang, Y. Han, S. Yuan, H. Jiang, C. Duan, Z. Liu, S. Liu, Adv. Mater. Technol. 2019, 4, 1900311.
[40]
J. Maes, L. Balcaen, E. Drijvers, Q. Zhao, J. De Roo, A. Vantomme, F. Vanhaecke, P. Geiregat, Z. Hens, J. Phys. Chem. Lett. 2018, 9, 3093.
[41]
X. Zhang, Z. Jin, J. Zhang, D. Bai, H. Bian, K. Wang, J. Sun, Q. Wang, S. F. Liu, ACS Appl. Mater. Interfaces 2018, 10, 7145.
[42]
I. Poli, J. Baker, J. McGettrick, F. De Rossi, S. Eslava, T. Watson, P. J. Cameron, J. Mater. Chem. A 2018, 6, 18677.
[43]
N. Thongprong, T. Supasai, Y. Li, I.-M. Tang, N. Rujisamphan, Energ. Technol. 2020, 8, 1901196.
[44]
P. Caprioglio, M. Stolterfoht, C. M. Wolff, T. Unold, B. Rech, S. Albrecht, D. Neher, Adv. Energy Mater. 2019, 9, 1901631.
[45]
W. Tress, M. Yavari, K. Domanski, P. Yadav, B. Niesen, J. P. C. Baena, A. Hagfeldt, M. Graetzel, Energy Environ. Sci. 2018, 11, 151.
[46]
Z. Zhang, D. Chen, W. Zhu, J. Ma, W. Chai, D. Chen, J. Zhang, C. Zhang, Y. Hao, Sci. China Mater. 2021, 64, 2107.
[47]
W. Zhu, Q. Zhang, D. Chen, Z. Zhang, Z. Lin, J. Chang, J. Zhang, C. Zhang, Y. Hao, Adv. Energy Mater. 2018, 8, 1802080.
[48]
X.-G. Zhang, S. T. Pantelides, Phys. Rev. Lett. 2012, 108, 266602.
[49]
V. M. Le Corre, E. A. Duijnstee, O. El Tambouli, J. M. Ball, H. J. Snaith, J. Lim, L. J. A. Koster, ACS Energy Lett. 2021, 6, 1087.
[50]
Y. Xu, J. Duan, J. Du, X. Yang, Y. Duan, Q. Tang, ChemSusChem 2021, 14, 1512.
[51]
Y. Tan, B. Xiao, P. Xu, Y. Luo, Q. Jiang, J. Yang, ACS Appl. Mater. Interfaces 2021, 13, 20034.
[52]
S. Smidstrup, T. Markussen, P. Vancraeyveld, J. Wellendorff, J. Schneider, T. Gunst, B. Verstichel, D. Stradi, P. A. Khomyakov, U. G. Vej-Hansen, J. Phys. Condens. Matter 2019, 32, 015901.
[53]
S. Grimme, J. Comput. Chem. 2006, 27, 1787.
[54]
G. Henkelman, H. Jónsson, J. Chem. Phys. 2000, 113, 9978.

RIGHTS & PERMISSIONS

2022 2022 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
PDF

Accesses

Citations

Detail

Sections
Recommended

/