High Efficiency Formamidinium-Cesium Perovskite-Based Radio-Photovoltaic Cells

Runlong Gao , Rui Chen , Pengying Wan , Xiao Ouyang , Qiantao Lei , Qi Deng , Xinyu Guan , Guangda Niu , Jiang Tang , Wei Chen , Zonghao Liu , Xiaoping Ouyang , Linyue Liu

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (1) : 12513

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (1) : 12513 DOI: 10.1002/eem2.12513
RESEARCH ARTICLE

High Efficiency Formamidinium-Cesium Perovskite-Based Radio-Photovoltaic Cells

Author information +
History +
PDF

Abstract

Radio-photovoltaic cell is a micro nuclear battery for devices operating in extreme environments, which converts the decay energy of a radioisotope into electric energy by using a phosphor and a photovoltaic converter. Many phosphors with high light yield and good environmental stability have been developed, but the performance of radio-photovoltaic cells remains far behind expectations in terms of power density and power conversion efficiency, because of the poor photoelectric conversion efficiency of traditional photovoltaic converters under low-light conditions. This paper reports an radio-photovoltaic cell based on an intrinsically stable formamidinium-cesium perovskite photovoltaic converter exhibiting a wide light wavelength response from 300 to 800 nm, high open-circuit voltage (VOC), and remarkable efficiency at low-light intensity. When a He ions accelerator is adopted as a mimicked α radioisotope source with an equivalent activity of 0.83 mCi cm-2, the formamidinium-cesium perovskite radio-photovoltaic cell achieves a VOC of 0.498 V, a short-circuit current (JSC) of 423.94 nA cm-2, and a remarkable power conversion efficiency of 0.886%, which is 6.6 times that of the Si reference radio-photovoltaic cell, as well as the highest among all radio-photovoltaic cells reported so far. This work provides a theoretical basis for enhancing the performance of radio-photovoltaic cells.

Keywords

formamidinium-cesium perovskite / phosphor / photovoltaic converter / power conversion efficiency / radio-photovoltaic cell

Cite this article

Download citation ▾
Runlong Gao, Rui Chen, Pengying Wan, Xiao Ouyang, Qiantao Lei, Qi Deng, Xinyu Guan, Guangda Niu, Jiang Tang, Wei Chen, Zonghao Liu, Xiaoping Ouyang, Linyue Liu. High Efficiency Formamidinium-Cesium Perovskite-Based Radio-Photovoltaic Cells. Energy & Environmental Materials, 2024, 7(1): 12513 DOI:10.1002/eem2.12513

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Prelas, M. Boraas, F. De La Torre Aguilar, J. D. Seelig, M. Tchakoua Tchouaso, D. Wisniewski, Introduction to Nuclear Batteries and Radioisotopes, Springer, Cham 2016.

[2]

M. A. Prelas, C. L. Weaver, M. L. Watermann, E. D. Lukosi, R. J. Schott, D. A. Wisniewski, Prog. Nucl. Energy 2014, 75, 117.

[3]

O. L. Ayodele, K. O. Sanusi, M. T. Kahn, J. Eng. Des. Technol. 2019, 17, 172.

[4]

T. H. Woo, S. H. Lee, J. Aerosp. Eng. 2014,

[5]

M. G. Spencer, T. Alam, Appl. Phys. Rev. 2019, 6, 031305.

[6]

T. Jiang, Z. Xu, H. Wang, Z. Yuan, K. Liu, X. Tang, 2020 Asia Energy Electr. Eng. Symp. AEEES 2020, IEEE, Chengdu, China, 2020, 763.

[7]

B. Liu, B. Dai, K. Liu, L. Yang, J. Zhao, G. Shu, Z. Lv, G. Gao, K. Yao, M. Bi, J. Xue, W. Wang, V. Ralchenko, J. Han, J. Zhu, Diam. Relat. Mater. 2018, 87, 35.

[8]

C. E. Munson, Q. Gaimard, K. Merghem, S. Sundaram, D. J. Rogers, J. De Sanoit, P. L. Voss, A. Ramdane, J. P. Salvestrini, A. Ougazzaden, J. Phys. D. Appl. Phys. 2018, 51, 035101.

[9]

V. Bormashov, S. Troschiev, A. Volkov, S. Tarelkin, E. Korostylev, A. Golovanov, M. Kuznetsov, D. Teteruk, N. Kornilov, S. Terentiev, S. Buga, V. Blank, Phys. Status Solidi Appl. Mater. Sci. 2015, 212, 2539.

[10]

D. Y. Qiao, X. J. Chen, Y. Ren, W. Z. Yuan, J. Microelectromech. Syst. 2011, 20, 685.

[11]

C. D. Cress, B. J. Landi, R. P. Raffaelle, D. M. Wilt, J. Appl. Phys. 2006, 100, 114519.

[12]

G. Rybicki, C. Vargas-Aburto, R. Uribe, Conf. Rec. IEEE Photovolt. Spec. Conf., IEEE, Washington, 1996, 93.

[13]

T. Jiang, Z. Xu, C. Meng, Y. Liu, X. Tang, Energ. Technol. 2020, 8, 2000667.

[14]

K. E. Bower, Y. A. Barbanel, Y. G. Shreter, G. W. Bohnert, in Polymers, Phosphors, and Voltaics for Radioisotope Microbatteries (Eds: K. E. Bower, Y. A. Barbanel, Y. G. Shreter, G. W. Bohnert), CRC Press, Boca Raton, FL 2002, 1.

[15]

P. E. Sims, L. C. Dinetta, A. M. Barnett, High efficiency GaP power conversion for Betavoltaic applications, Space Photovoltaic Research & Technology Conference, 13th Space Photovoltaic Research and Technology Conference (SPRAT 13), 1994.

[16]

M. Sychov, A. Kavetsky, G. Yakubova, G. Walter, S. Yousaf, Q. Lin, D. Chan, H. Socarras, K. Bower, Appl. Radiat. Isot. 2008, 66, 173.

[17]

X. Guo, Y. Liu, Z. Xu, Z. Jin, K. Liu, Z. Yuan, P. Gong, X. Tang, Sens. Actuators A Phys. 2018, 275, 119.

[18]

T. Jiang, Z. Xu, X. Tang, Z. Yuan, H. Wang, M. Bian, Int. J. Energy Res. 2021, 45, 11712.

[19]

J. Russo, M. Litz, W. Ray, B. Smith, R. Moyers, Appl. Radiat. Isot. 2017, 130, 66.

[20]

S. T. R. R. J. Walko, C. S. Ashley, C. J. Brinker, Electronic and Photonic Power Applications, 1990.

[21]

Z. H. Xu, X. Bin Tang, L. Hong, Y. P. Liu, D. Chen, J. Radioanal. Nucl. Chem. 2015, 303, 2313.

[22]

L. Hong, X. Bin Tang, Z. H. Xu, Y. P. Liu, D. Chen, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 2014, 338, 112.

[23]

L. Hong, X. Bin Tang, Z. H. Xu, Y. P. Liu, D. Chen, J. Radioanal. Nucl. Chem. 2014, 302, 701.

[24]

X. Tang, Z. Xu, Y. Liu, M. Liu, H. Wang, D. Chen, Energ. Technol. 2015, 3, 1121.

[25]

R. J. Schott, C. L. Weaver, M. A. Prelas, K. Oh, J. B. Rothenberger, R. V. Tompson, D. A. Wisniewski, Nucl. Technol. 2013, 181, 349.

[26]

M. Tyagi, A. Singh, D. Banerjee, G. Sugilal, C. P. Kaushik, Appl. Phys. Lett. 2021, 118, 173903.

[27]

X. Li, J. Chen, D. Yang, X. Chen, D. Geng, L. Jiang, Y. Wu, C. Meng, H. Zeng, Nat. Commun. 2021,

[28]

Z. Zhang, X. Tang, Y. Liu, Z. Xu, H. Ye, F. Tian, K. Liu, Z. Yuan, W. Chen, Sens. Actuators A Phys. 2019, 290, 162.

[29]

M. M. Prelas, E. E. Charlson, E. E. Charlson, J. M. Meese, G. Popovici, T. Stacy, Laser Part. Beams 1993, 11, 65.

[30]

M. A. Prelas, F. P. Boody, E. J. Charlson, G. H. Miley, Prog. Nucl. Energy 1990, 23, 223.

[31]

Z. Liu, L. K. Ono, Y. Qi, J. Energy Chem. 2020, 46, 215.

[32]

Y. H. Lin, N. Sakai, P. Da, J. Wu, H. C. Sansom, A. J. Ramadan, S. Mahesh, J. Liu, R. D. J. Oliver, J. Lim, L. Aspitarte, K. Sharma, P. K. Madhu, A. B. Morales-Vilches, P. K. Nayak, S. Bai, F. Gao, C. R. M. Grovenor, M. B. Johnston, J. G. Labram, J. R. Durrant, J. M. Ball, B. Wenger, B. Stannowski, H. J. Snaith, Science 2020, 369, 96.

[33]

M. Li, F. Igbari, Z. K. Wang, L. S. Liao, Adv. Energy Mater. 2020,

[34]

S. Zhu, Y. Li, Solid State Electron. 2020, 173, 107903.

[35]

S. Liu, R. Chen, X. Tian, Z. Yang, J. Zhou, F. Ren, S. Zhang, Y. Zhang, M. Guo, Y. Shen, Z. Liu, W. Chen, Nano Energy 2022, 94, 106935.

[36]

X. He, J. Chen, X. Ren, L. Zhang, Y. Liu, J. Feng, J. Fang, K. Zhao, S. Liu, Adv. Mater. 2021,

[37]

Y. Wu, A. W. Darge, A. A. Trofimov, C. Li, K. S. Brinkman, S. M. Husson, L. G. Jacobsohn, Opt. Mater. (Amst). 2019, 88, 424.

[38]

J. T. M. De Haas, P. Dorenbos, IEEE Trans. Nucl. Sci. 2008, 55, 1086.

[39]

R. Gao, L. Liu, Y. Li, L. Shen, P. Wan, X. Ouyang, H. Zhang, J. Ruan, L. Zhou, L. Chen, X. Zhang, J. Liu, H. Li, M. Liu, X. Ouyang, Energy Convers. Manag. 2022, 252, 115090.

[40]

I. Raifuku, Y. Ishikawa, S. Ito, Y. Uraoka, J. Phys. Chem. C 2016, 120, 18986.

[41]

M. H. Ann, J. Kim, M. Kim, G. Alosaimi, D. Kim, N. Y. Ha, J. Seidel, N. Park, J. S. Yun, J. H. Kim, Nano Energy 2020, 68, 104321.

[42]

K. Shen, Q. Li, D. Wang, R. Yang, Y. Deng, M. J. Jeng, D. Wang, Sol. Energy Mater. Sol. Cells 2016, 144, 472.

[43]

J. W. Lee, D. H. Kim, H. S. Kim, S. W. Seo, S. M. Cho, N. G. Park, Adv. Energy Mater. 2015, 5, 1501310.

[44]

R. Chen, S. Liu, X. Xu, F. Ren, J. Zhou, X. Tian, Z. Yang, X. Guanz, Z. Liu, S. Zhang, Y. Zhang, Y. Wu, L. Han, Y. Qi, W. Chen, Energy Environ. Sci. 2022, 15, 2567.

RIGHTS & PERMISSIONS

2022 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

189

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/