High Efficiency Formamidinium-Cesium Perovskite-Based Radio-Photovoltaic Cells
Runlong Gao , Rui Chen , Pengying Wan , Xiao Ouyang , Qiantao Lei , Qi Deng , Xinyu Guan , Guangda Niu , Jiang Tang , Wei Chen , Zonghao Liu , Xiaoping Ouyang , Linyue Liu
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (1) : 12513
High Efficiency Formamidinium-Cesium Perovskite-Based Radio-Photovoltaic Cells
Radio-photovoltaic cell is a micro nuclear battery for devices operating in extreme environments, which converts the decay energy of a radioisotope into electric energy by using a phosphor and a photovoltaic converter. Many phosphors with high light yield and good environmental stability have been developed, but the performance of radio-photovoltaic cells remains far behind expectations in terms of power density and power conversion efficiency, because of the poor photoelectric conversion efficiency of traditional photovoltaic converters under low-light conditions. This paper reports an radio-photovoltaic cell based on an intrinsically stable formamidinium-cesium perovskite photovoltaic converter exhibiting a wide light wavelength response from 300 to 800 nm, high open-circuit voltage (VOC), and remarkable efficiency at low-light intensity. When a He ions accelerator is adopted as a mimicked α radioisotope source with an equivalent activity of 0.83 mCi cm-2, the formamidinium-cesium perovskite radio-photovoltaic cell achieves a VOC of 0.498 V, a short-circuit current (JSC) of 423.94 nA cm-2, and a remarkable power conversion efficiency of 0.886%, which is 6.6 times that of the Si reference radio-photovoltaic cell, as well as the highest among all radio-photovoltaic cells reported so far. This work provides a theoretical basis for enhancing the performance of radio-photovoltaic cells.
formamidinium-cesium perovskite / phosphor / photovoltaic converter / power conversion efficiency / radio-photovoltaic cell
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
2022 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
/
| 〈 |
|
〉 |