High Efficiency Formamidinium-Cesium Perovskite-Based Radio-Photovoltaic Cells
Runlong Gao, Rui Chen, Pengying Wan, Xiao Ouyang, Qiantao Lei, Qi Deng, Xinyu Guan, Guangda Niu, Jiang Tang, Wei Chen, Zonghao Liu, Xiaoping Ouyang, Linyue Liu
High Efficiency Formamidinium-Cesium Perovskite-Based Radio-Photovoltaic Cells
Radio-photovoltaic cell is a micro nuclear battery for devices operating in extreme environments, which converts the decay energy of a radioisotope into electric energy by using a phosphor and a photovoltaic converter. Many phosphors with high light yield and good environmental stability have been developed, but the performance of radio-photovoltaic cells remains far behind expectations in terms of power density and power conversion efficiency, because of the poor photoelectric conversion efficiency of traditional photovoltaic converters under low-light conditions. This paper reports an radio-photovoltaic cell based on an intrinsically stable formamidinium-cesium perovskite photovoltaic converter exhibiting a wide light wavelength response from 300 to 800 nm, high open-circuit voltage (VOC), and remarkable efficiency at low-light intensity. When a He ions accelerator is adopted as a mimicked α radioisotope source with an equivalent activity of 0.83 mCi cm-2, the formamidinium-cesium perovskite radio-photovoltaic cell achieves a VOC of 0.498 V, a short-circuit current (JSC) of 423.94 nA cm-2, and a remarkable power conversion efficiency of 0.886%, which is 6.6 times that of the Si reference radio-photovoltaic cell, as well as the highest among all radio-photovoltaic cells reported so far. This work provides a theoretical basis for enhancing the performance of radio-photovoltaic cells.
formamidinium-cesium perovskite / phosphor / photovoltaic converter / power conversion efficiency / radio-photovoltaic cell
[1] |
M. Prelas, M. Boraas, F. De La Torre Aguilar, J. D. Seelig, M. Tchakoua Tchouaso, D. Wisniewski, Introduction to Nuclear Batteries and Radioisotopes, Springer, Cham 2016.
|
[2] |
M. A. Prelas, C. L. Weaver, M. L. Watermann, E. D. Lukosi, R. J. Schott, D. A. Wisniewski, Prog. Nucl. Energy 2014, 75, 117.
|
[3] |
O. L. Ayodele, K. O. Sanusi, M. T. Kahn, J. Eng. Des. Technol. 2019, 17, 172.
|
[4] |
T. H. Woo, S. H. Lee, J. Aerosp. Eng. 2014,
CrossRef
Google scholar
|
[5] |
M. G. Spencer, T. Alam, Appl. Phys. Rev. 2019, 6, 031305.
|
[6] |
T. Jiang, Z. Xu, H. Wang, Z. Yuan, K. Liu, X. Tang, 2020 Asia Energy Electr. Eng. Symp. AEEES 2020, IEEE, Chengdu, China, 2020, 763.
|
[7] |
B. Liu, B. Dai, K. Liu, L. Yang, J. Zhao, G. Shu, Z. Lv, G. Gao, K. Yao, M. Bi, J. Xue, W. Wang, V. Ralchenko, J. Han, J. Zhu, Diam. Relat. Mater. 2018, 87, 35.
|
[8] |
C. E. Munson, Q. Gaimard, K. Merghem, S. Sundaram, D. J. Rogers, J. De Sanoit, P. L. Voss, A. Ramdane, J. P. Salvestrini, A. Ougazzaden, J. Phys. D. Appl. Phys. 2018, 51, 035101.
|
[9] |
V. Bormashov, S. Troschiev, A. Volkov, S. Tarelkin, E. Korostylev, A. Golovanov, M. Kuznetsov, D. Teteruk, N. Kornilov, S. Terentiev, S. Buga, V. Blank, Phys. Status Solidi Appl. Mater. Sci. 2015, 212, 2539.
|
[10] |
D. Y. Qiao, X. J. Chen, Y. Ren, W. Z. Yuan, J. Microelectromech. Syst. 2011, 20, 685.
|
[11] |
C. D. Cress, B. J. Landi, R. P. Raffaelle, D. M. Wilt, J. Appl. Phys. 2006, 100, 114519.
|
[12] |
G. Rybicki, C. Vargas-Aburto, R. Uribe, Conf. Rec. IEEE Photovolt. Spec. Conf., IEEE, Washington, 1996, 93.
|
[13] |
T. Jiang, Z. Xu, C. Meng, Y. Liu, X. Tang, Energ. Technol. 2020, 8, 2000667.
|
[14] |
K. E. Bower, Y. A. Barbanel, Y. G. Shreter, G. W. Bohnert, in Polymers, Phosphors, and Voltaics for Radioisotope Microbatteries (Eds: K. E. Bower, Y. A. Barbanel, Y. G. Shreter, G. W. Bohnert), CRC Press, Boca Raton, FL 2002, 1.
|
[15] |
P. E. Sims, L. C. Dinetta, A. M. Barnett, High efficiency GaP power conversion for Betavoltaic applications, Space Photovoltaic Research & Technology Conference, 13th Space Photovoltaic Research and Technology Conference (SPRAT 13), 1994.
|
[16] |
M. Sychov, A. Kavetsky, G. Yakubova, G. Walter, S. Yousaf, Q. Lin, D. Chan, H. Socarras, K. Bower, Appl. Radiat. Isot. 2008, 66, 173.
|
[17] |
X. Guo, Y. Liu, Z. Xu, Z. Jin, K. Liu, Z. Yuan, P. Gong, X. Tang, Sens. Actuators A Phys. 2018, 275, 119.
|
[18] |
T. Jiang, Z. Xu, X. Tang, Z. Yuan, H. Wang, M. Bian, Int. J. Energy Res. 2021, 45, 11712.
|
[19] |
J. Russo, M. Litz, W. Ray, B. Smith, R. Moyers, Appl. Radiat. Isot. 2017, 130, 66.
|
[20] |
S. T. R. R. J. Walko, C. S. Ashley, C. J. Brinker, Electronic and Photonic Power Applications, 1990.
|
[21] |
Z. H. Xu, X. Bin Tang, L. Hong, Y. P. Liu, D. Chen, J. Radioanal. Nucl. Chem. 2015, 303, 2313.
|
[22] |
L. Hong, X. Bin Tang, Z. H. Xu, Y. P. Liu, D. Chen, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 2014, 338, 112.
|
[23] |
L. Hong, X. Bin Tang, Z. H. Xu, Y. P. Liu, D. Chen, J. Radioanal. Nucl. Chem. 2014, 302, 701.
|
[24] |
X. Tang, Z. Xu, Y. Liu, M. Liu, H. Wang, D. Chen, Energ. Technol. 2015, 3, 1121.
|
[25] |
R. J. Schott, C. L. Weaver, M. A. Prelas, K. Oh, J. B. Rothenberger, R. V. Tompson, D. A. Wisniewski, Nucl. Technol. 2013, 181, 349.
|
[26] |
M. Tyagi, A. Singh, D. Banerjee, G. Sugilal, C. P. Kaushik, Appl. Phys. Lett. 2021, 118, 173903.
|
[27] |
X. Li, J. Chen, D. Yang, X. Chen, D. Geng, L. Jiang, Y. Wu, C. Meng, H. Zeng, Nat. Commun. 2021,
CrossRef
Google scholar
|
[28] |
Z. Zhang, X. Tang, Y. Liu, Z. Xu, H. Ye, F. Tian, K. Liu, Z. Yuan, W. Chen, Sens. Actuators A Phys. 2019, 290, 162.
|
[29] |
M. M. Prelas, E. E. Charlson, E. E. Charlson, J. M. Meese, G. Popovici, T. Stacy, Laser Part. Beams 1993, 11, 65.
|
[30] |
M. A. Prelas, F. P. Boody, E. J. Charlson, G. H. Miley, Prog. Nucl. Energy 1990, 23, 223.
|
[31] |
Z. Liu, L. K. Ono, Y. Qi, J. Energy Chem. 2020, 46, 215.
|
[32] |
Y. H. Lin, N. Sakai, P. Da, J. Wu, H. C. Sansom, A. J. Ramadan, S. Mahesh, J. Liu, R. D. J. Oliver, J. Lim, L. Aspitarte, K. Sharma, P. K. Madhu, A. B. Morales-Vilches, P. K. Nayak, S. Bai, F. Gao, C. R. M. Grovenor, M. B. Johnston, J. G. Labram, J. R. Durrant, J. M. Ball, B. Wenger, B. Stannowski, H. J. Snaith, Science 2020, 369, 96.
|
[33] |
M. Li, F. Igbari, Z. K. Wang, L. S. Liao, Adv. Energy Mater. 2020,
CrossRef
Google scholar
|
[34] |
S. Zhu, Y. Li, Solid State Electron. 2020, 173, 107903.
|
[35] |
S. Liu, R. Chen, X. Tian, Z. Yang, J. Zhou, F. Ren, S. Zhang, Y. Zhang, M. Guo, Y. Shen, Z. Liu, W. Chen, Nano Energy 2022, 94, 106935.
|
[36] |
X. He, J. Chen, X. Ren, L. Zhang, Y. Liu, J. Feng, J. Fang, K. Zhao, S. Liu, Adv. Mater. 2021,
CrossRef
Google scholar
|
[37] |
Y. Wu, A. W. Darge, A. A. Trofimov, C. Li, K. S. Brinkman, S. M. Husson, L. G. Jacobsohn, Opt. Mater. (Amst). 2019, 88, 424.
|
[38] |
J. T. M. De Haas, P. Dorenbos, IEEE Trans. Nucl. Sci. 2008, 55, 1086.
|
[39] |
R. Gao, L. Liu, Y. Li, L. Shen, P. Wan, X. Ouyang, H. Zhang, J. Ruan, L. Zhou, L. Chen, X. Zhang, J. Liu, H. Li, M. Liu, X. Ouyang, Energy Convers. Manag. 2022, 252, 115090.
|
[40] |
I. Raifuku, Y. Ishikawa, S. Ito, Y. Uraoka, J. Phys. Chem. C 2016, 120, 18986.
|
[41] |
M. H. Ann, J. Kim, M. Kim, G. Alosaimi, D. Kim, N. Y. Ha, J. Seidel, N. Park, J. S. Yun, J. H. Kim, Nano Energy 2020, 68, 104321.
|
[42] |
K. Shen, Q. Li, D. Wang, R. Yang, Y. Deng, M. J. Jeng, D. Wang, Sol. Energy Mater. Sol. Cells 2016, 144, 472.
|
[43] |
J. W. Lee, D. H. Kim, H. S. Kim, S. W. Seo, S. M. Cho, N. G. Park, Adv. Energy Mater. 2015, 5, 1501310.
|
[44] |
R. Chen, S. Liu, X. Xu, F. Ren, J. Zhou, X. Tian, Z. Yang, X. Guanz, Z. Liu, S. Zhang, Y. Zhang, Y. Wu, L. Han, Y. Qi, W. Chen, Energy Environ. Sci. 2022, 15, 2567.
|
/
〈 | 〉 |