Metal-Organic Framework Enabling Poly(Vinylidene Fluoride)-Based Polymer Electrolyte for Dendrite-Free and Long-Lifespan Sodium Metal Batteries
Yusi Lei, Liang Yue, Yuruo Qi, Yubin Niu, Shujuan Bao, Jie Song, Maowen Xu
Metal-Organic Framework Enabling Poly(Vinylidene Fluoride)-Based Polymer Electrolyte for Dendrite-Free and Long-Lifespan Sodium Metal Batteries
Sodium dentrite formed by uneven plating/stripping can reduce the utilization of active sodium with poor cyclic stability and, more importantly, cause internal short circuit and lead to thermal runaway and fire. Therefore, sodium dendrites and their related problems seriously hinder the practical application of sodium metal batteries (SMBs). Herein, a design concept for the incorporation of metal-organic framework (MOF) in polymer matrix (polyvinylidene fluoride-hexafluoropropylene) is practiced to prepare a novel gel polymer electrolyte (PH@MOF polymer-based electrolyte [GPE]) and thus to achieve high-performance SMBs. The addition of the MOF particles can not only reduce the movement hindrance of polymer chains to promote the transfer of Na+ but also anchor anions by virtue of their negative charge to reduce polarization during electrochemical reaction. A stable cycling performance with tiny overpotential for over 800 h at a current density of 5 mA cm-2 with areal capacity of 5 mA h cm-2 is achieved by symmetric cells based on the resulted GPE while the Na3V2O2(PO4)2F@rGO (NVOPF)|PH@MOF|Na cell also displays impressive specific cycling capacity (113.3 mA h g-1 at 1 C) and rate capability with considerable capacity retention.
dendrite-free / gel polymer electrolyte / metal organic framework / sodium batteries
[1] |
B. Sun, P. Xiong, U. Maitra, D. Langsdorf, K. Yan, C. Wang, J. Janek, D. Schroder, G. Wang, Adv. Mater. 2020, 32, 1903891.
|
[2] |
Y. M. Chen, M. W. Xu, Y. H. Huang, A. Manthiram, Chem 2022, 8, 311.
|
[3] |
Y. Zhao, K. R. Adair, X. Sun, Energy Environ. Sci. 2018, 11, 2673.
|
[4] |
H. Liu, X. B. Cheng, Z. Jin, R. Zhang, G. Wang, L. Q. Chen, Q. B. Liu, J. Q. Huang, Q. Zhang, EnergyChem. 2019, 1, 100003.
|
[5] |
W. Fang, H. Jiang, Y. Zheng, H. Zheng, X. Liang, Y. Sun, C. Chen, H. Xiang, J. Power Sources 2020, 455, 227956.
|
[6] |
X. Chen, X. Shen, T. Z. Hou, R. Zhang, H. J. Peng, Q. Zhang, Chem 2020, 6, 2242.
|
[7] |
T. Lan, C. L. Tsai, F. Tietz, X. K. Wei, M. Heggen, R. E. Dunin-Borkowski, R. Wang, Y. Xiao, Q. Ma, O. Guillon, Nano Energy 2019, 65, 104040.
|
[8] |
D. Zhang, B. Li, S. Wang, S. Yang, ACS Appl. Mater. Interfaces 2017, 9, 40265.
|
[9] |
G. Y. Zheng, Q. W. Lin, J. B. Ma, J. Zhang, Y. B. He, X. Tang, F. Y. Kang, W. Lv, Q. H. Yang, InfoMat 2021, 3, 1445.
|
[10] |
L. Yue, Y. R. Qi, Y. B. Niu, S. J. Bao, M. W. Xu, Adv. Energy Mater. 2021, 11, 2102497.
|
[11] |
B. Sun, P. Li, J. Zhang, D. Wang, P. Munroe, C. Wang, P. H. L. Notten, G. Wang, Adv. Mater. 2018, 30, 1801334.
|
[12] |
P. Wen, P. Lu, X. Shi, Y. Yao, H. Shi, H. Liu, Y. Yu, Z. S. Wu, Adv. Energy Mater. 2020, 11, 2002930.
|
[13] |
L. Lu, C. Sun, J. Hao, Z. Wang, S. F. Mayer, M. T. Fernández-Díaz, J. A. Alonso, B. Zou, Energy Environ. Mater. 2022,
CrossRef
Google scholar
|
[14] |
Z. Bi, W. Huang, S. Mu, W. Sun, N. Zhao, X. Guo, Nano Energy 2021, 90, 106498.
|
[15] |
S. J. Tan, X. X. Zeng, Q. Ma, X. W. Wu, Y. G. Guo, Electrochem. Energy Rev. 2018, 1, 113.
|
[16] |
C. Zhao, L. Liu, X. Qi, Y. Lu, F. Wu, J. Zhao, Y. Yu, Y. S. Hu, L. Chen, Adv. Energy Mater. 2018, 8, 1703012.
|
[17] |
S. Li, N. Li, C. Sun, Inorg. Chem. Front. 2021, 8, 361.
|
[18] |
X. Ban, W. Zhang, N. Chen, C. Sun, J. Phys. Chem. C 2018, 122, 9852.
|
[19] |
D. Lei, Y. B. He, H. Huang, Y. Yuan, G. Zhong, Q. Zhao, X. Hao, D. Zhang, C. Lai, S. Zhang, J. Ma, Y. Wei, Q. Yu, W. Lv, Y. Yu, B. Li, Q. H. Yang, Y. Yang, J. Lu, F. Kang, Nat. Commun. 2019, 10, 4244.
|
[20] |
C. Luo, T. Shen, H. Ji, D. Huang, J. Liu, B. Ke, Y. Wu, Y. Chen, C. Yan, Small 2020, 16, 1906208.
|
[21] |
X. Lu, H. Wu, D. Kong, X. Li, L. Shen, Y. Lu, ACS Mater. Lett. 2020, 2, 1435.
|
[22] |
C. Zhang, L. Shen, J. Shen, F. Liu, G. Chen, R. Tao, S. Ma, Y. Peng, Y. Lu, Adv. Mater. 2019, 31, 1808338.
|
[23] |
W. Du, K. Shen, Y. Qi, W. Gao, M. Tao, G. Du, S. J. Bao, M. Chen, Y. Chen, M. Xu, Nano-Micro Lett. 2021, 13, 50.
|
[24] |
N. Deng, L. Wang, Y. Feng, M. Liu, Q. Li, G. Wang, L. Zhang, W. Kang, B. Cheng, Y. Liu, Chem. Eng. J. 2020, 388, 124241.
|
[25] |
S. H. Kim, J. S. Yeon, R. Kim, K. M. Choi, H. S. Park, J. Mater. Chem. A 2018, 6, 24971.
|
[26] |
Z. Hao, Y. Wu, Q. Zhao, J. Tang, Q. Zhang, X. Ke, J. Liu, Y. Jin, H. Wang, Adv. Funct. Mater. 2021, 31, 2102938.
|
[27] |
G. K. Gao, Y. R. Wang, H. J. Zhu, Y. Chen, R. X. Yang, C. Jiang, H. Ma, Y. Q. Lan, Adv. Sci. 2020, 7, 2002190.
|
[28] |
S. Suriyakumar, M. Kanagaraj, M. Kathiresan, N. Angulakshmi, S. Thomas, A. M. Stephan, Electrochim. Acta 2018, 265, 151.
|
[29] |
X. Ma, Y. Lou, X.-B. Chen, Z. Shi, Y. Xu, Chem. Eng. J. 2019, 356, 227.
|
[30] |
Q. Zeng, J. Wang, X. Li, Y. Ouyang, W. He, D. Li, S. Guo, Y. Xiao, H. Deng, W. Gong, Q. Zhang, S. Huang, ACS Energy Lett. 2021, 6, 2434.
|
[31] |
L. Shen, H. B. Wu, F. Liu, C. Zhang, S. Ma, Z. Le, Y. Lu, Nanoscale Horiz. 2019, 4, 705.
|
[32] |
Z. Ye, Y. Jiang, L. Li, F. Wu, R. Chen, Nano-Micro Lett. 2021, 13, 203.
|
[33] |
C. C. Sun, A. Yusuf, S. W. Li, X. L. Qi, Y. Ma, D. Y. Wang, Chem. Eng. J. 2021, 414, 128702.
|
[34] |
Z. Zhang, Y. Huang, C. Li, X. Li, ACS Appl. Mater. Interfaces 2021, 1, 37262.
|
[35] |
S. Bai, X. Liu, K. Zhu, S. Wu, H. Zhou, Nat. Energy 2016, 1, 16094.
|
[36] |
O. M. Yaghi, H. Li, T. L. Groy, J. Am. Chem. Soc. 1996, 118, 9096.
|
[37] |
S. S. Y. Chui, S. M. F. Lo, J. P. H. Charmant, A. G. Orpen, I. D. Williams, Science 1999, 283, 1148.
|
[38] |
S. Bai, Y. Sun, J. Yi, Y. He, Y. Qiao, H. Zhou, Joule 2018, 2, 2117.
|
[39] |
T. Shen, T. Liu, H. Mo, Z. Yuan, F. Cui, Y. Jin, X. Chen, RSC Adv. 2020, 10, 22881.
|
[40] |
W. Zhang, J. Nie, F. Li, Z. L. Wang, C. Sun, Nano Energy 2018, 45, 413.
|
[41] |
X. Fu, M. J. Hurlock, C. Ding, X. Li, Q. Zhang, W. H. Zhong, Small 2020, 18, 2106225.
|
[42] |
R. Dutta, A. Kumar, J. Solid State Electrochem. 2018, 22, 2945.
|
[43] |
G. T. Davis, J. E. McKinney, M. G. Broadhurst, S. C. Roth, J. Appl. Phys. 1978, 49, 4998.
|
[44] |
L. N. Sim, S. R. Majid, A. K. Arof, Vib. Spectrosc. 2012, 58, 57.
|
[45] |
C. Sun, J. Liu, Y. Gong, D. P. Wilkinson, J. Zhang, Nano Energy 2017, 33, 363.
|
[46] |
Z. Hao, Q. Zhao, J. Tang, Q. Zhang, J. Liu, Y. Jin, H. Wang, Mater. Horiz. 2021, 8, 12.
|
[47] |
P. Wang, H. Zhang, J. Chai, T. Liu, R. Hu, Z. Zhang, G. Li, G. Cui, Solid State Ionics 2019, 337, 140.
|
[48] |
L. Yang, Y. Jiang, X. Liang, Y. Lei, T. Yuan, H. Lu, Z. Liu, Y. Cao, J. Feng, ACS Appl. Energy Mater. 2020, 3, 10053.
|
[49] |
R. Mishra, S. K. Singh, H. Gupta, R. K. Tiwari, D. Meghnani, A. Patel, A. Tiwari, V. K. Tiwari, R. K. Singh, Energy Fuel 2021, 35, 15153.
|
[50] |
Q. Pan, Z. Li, W. Zhang, D. Zeng, Y. Sun, H. Cheng, Solid State Ionics 2017, 300, 60.
|
[51] |
Y. Q. Yang, Z. Chang, M. X. Li, X. W. Wang, Y. P. Wu, Solid State Ionics 2015, 269, 1.
|
[52] |
Harshlata , K. Mishra, D. K. Rai, Mater. Sci. Eng. B 2021, 267, 115098.
|
[53] |
X. L. Qi, D. D. Zhou, J. Zhang, S. Hu, M. Haranczyk, D. Y. Wang, ACS Appl. Mater. Interfaces 2019, 11, 20325.
|
[54] |
Y. Hou, W. Hu, Z. Gui, Y. Hu, Ind. Eng. Chem. Res. 2017, 56, 2036.
|
[55] |
Z. Liu, X. Wang, J. Chen, Y. Tang, Z. Mao, D. Wang, ACS Appl. Energy Mater. 2021, 4, 623.
|
[56] |
H. M. Law, J. Yu, S. C. T. Kwok, G. Zhou, M. J. Robson, J. Wu, F. Ciucci, Energy Storage Mater. 2022, 46, 182.
|
[57] |
P. Bai, J. Li, F. R. Brushett, M. Z. Bazant, Energy Environ. Sci. 2016, 9, 3221.
|
[58] |
H. J. S. Sand III, Philos. Mag. 1901, 1, 45.
|
[59] |
C. Ma, T. Xu, Y. Wang, Energy Storage Mater. 2020, 25, 811.
|
[60] |
L. Fan, X. Li, Nano Energy 2018, 53, 630.
|
[61] |
S. Janakiraman, O. Padmaraj, S. Ghosh, A. Venimadhav, J. Electroanal. Chem. 2018, 826, 142.
|
[62] |
Y. Lei, G. Du, Y. Qi, Y. Niu, S. Bao, M. Xu, J. Colloid Interface Sci. 2021, 599, 190.
|
[63] |
X. Wang, Z. Liu, Y. Wang, J. Chen, Z. Mao, D. Wang, ChemElectroChem 2020, 7, 5021.
|
[64] |
X. Wang, Z. Liu, Y. Tang, J. Chen, Z. Mao, D. Wang, Solid State Ionics 2021, 359, 115532.
|
[65] |
A. P. Vijaya Kumar Saroja, R. A. Kumar, B. C. Moharana, M. Kamaraj, S. Ramaprabhu, J. Electroanal. Chem. 2020, 859, 113864.
|
[66] |
C. Ma, K. Dai, H. Hou, X. Ji, L. Chen, D. G. Ivey, W. Wei, Adv. Sci. 2018, 5, 1700996.
|
[67] |
Y. Niu, M. Xu, C. Dai, B. Shen, C. M. Li, Phys. Chem. Chem. Phys. 2017, 19, 17270.
|
[68] |
T. C. Mendes, X. Zhang, Y. Wu, P. C. Howlett, M. Forsyth, D. R. Macfarlane, ACS Sustain. Chem. Eng. 2019, 7, 3722.
|
[69] |
Y. Gao, G. Chen, X. Wang, H. Yang, Z. Wang, W. Lin, H. Xu, Y. Bai, C. Wu, ACS Appl. Mater. Interfaces 2020, 12, 22981.
|
/
〈 | 〉 |