Alkali Metal Ion Substituted Carboxymethyl Cellulose as Anode Polymeric Binders for Rapidly Chargeable Lithium-Ion Batteries

Seoungwoo Byun, Zhu Liu, Dong Ok Shin, Kyuman Kim, Jaecheol Choi, Youngjoon Roh, Dahee Jin, Seungwon Jung, Kyung-Geun Kim, Young-Gi Lee, Stefan Ringe, Yong Min Lee

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (1) : 12509. DOI: 10.1002/eem2.12509
RESEARCH ARTICLE

Alkali Metal Ion Substituted Carboxymethyl Cellulose as Anode Polymeric Binders for Rapidly Chargeable Lithium-Ion Batteries

Author information +
History +

Abstract

The increasing demand for short charging time on electric vehicles has motivated realization of fast chargeable lithium-ion batteries (LIBs). However, shortening the charging time of LIBs is limited by Li+ intercalation process consisting of liquid-phase diffusion, de-solvation, SEI crossing, and solid-phase diffusion. Herein, we propose a new strategy to accelerate the de-solvation step through a control of interaction between polymeric binder and solvent-Li+ complexes. For this purpose, three alkali metal ions (Li+, Na+, and K+) substituted carboxymethyl cellulose (Li-, Na-, and K-CMC) are prepared to examine the effects of metal ions on their performances. The lowest activation energy of de-solvation and the highest chemical diffusion coefficient were observed for Li-CMC. Specifically, Li-CMC cell with a capacity of 3 mAh cm-2 could be charged to >95% in 10 min, while a value above >85% was observed after 150 cycles. Thus, the presented approach holds great promise for the realization of fast charging.

Keywords

de-solvation / digital twins / fast charging / graphite anodes / polymeric binders

Cite this article

Download citation ▾
Seoungwoo Byun, Zhu Liu, Dong Ok Shin, Kyuman Kim, Jaecheol Choi, Youngjoon Roh, Dahee Jin, Seungwon Jung, Kyung-Geun Kim, Young-Gi Lee, Stefan Ringe, Yong Min Lee. Alkali Metal Ion Substituted Carboxymethyl Cellulose as Anode Polymeric Binders for Rapidly Chargeable Lithium-Ion Batteries. Energy & Environmental Materials, 2024, 7(1): 12509 https://doi.org/10.1002/eem2.12509

References

[1]
USABC , USABC goals for low-cost/fast-charge advanced batteries for EVs-CY 2023. https://www.uscar.org/guest/article_view.php?articles_id=85 (accessed: May 2018).
[2]
W. Cai, Y.-X. Yao, G.-L. Zhu, C. Yan, L.-L. Jiang, C. He, J.-Q. Huang, Q. Zhang, Chem. Soc. Rev. 2020, 49, 3806.
[3]
Y. Liu, Y. Zhu, Y. Cui, Nat. Energy 2019, 4, 540.
[4]
M. Weiss, R. Ruess, J. Kasnatscheew, Y. Levartovsky, N. R. Levy, P. Minnmann, L. Stolz, T. Waldmann, M. Wohlfahrt-Mehrens, D. Aurbach, M. Winter, Y. Ein-Eli, J. Janek, Adv. Energy Mater. 2021, 11, 2101126.
[5]
G.-L. Zhu, C.-Z. Zhao, J.-Q. Huang, C. He, J. Zhang, S. Chen, L. Xu, H. Yuan, Q. Zhang, Small 2019, 15, 1805389.
[6]
K. Xu, Y. Lam, S. S. Zhang, T. R. Jow, T. B. Curtis, J. Phys. Chem. C 2007, 111, 7411.
[7]
S. S. Zhang, InfoMat. 2021, 3, 125.
[8]
T. Abe, H. Fukuda, Y. Iriyama, Z. Ogumi, J. Electrochem. Soc. 2004, 151, A1120.
[9]
E. J. McShane, A. M. Colclasure, D. E. Brown, Z. M. Konz, K. Smith, B. D. McCloskey, ACS Energy Lett. 2020, 5, 2045.
[10]
W. Cai, C. Yan, Y.-X. Yao, L. Xu, R. Xu, L.-L. Jiang, J.-Q. Huang, Q. Zhang, Small Struct. 2020, 1, 2000010.
[11]
Z. Wang, F. Qi, L. Yin, Y. Shi, C. Sun, B. An, H.-M. Cheng, F. Li, Adv. Energy Mater. 2020, 10, 1903843.
[12]
K.-H. Chen, V. Goel, M. J. Namkoong, M. Wied, S. Müller, V. Wood, J. Sakamoto, K. Thornton, N. P. Dasgupta, Adv. Energy Mater. 2021, 11, 2003336.
[13]
J. Billaud, F. Bouville, T. Magrini, C. Villevieille, A. R. Studart, Nat. Energy 2016, 1, 16097.
[14]
Y. Ren, L. J. Hardwick, P. G. Bruce, Angew. Chem. Int. Ed. 2010, 49, 2570.
[15]
P. L. Taberna, S. Mitra, P. Poizot, P. Simon, J. M. Tarascon, Nat. Mater. 2006, 5, 567.
[16]
P. M. Attia, A. Grover, N. Jin, K. A. Severson, T. M. Markov, Y.-H. Liao, M. H. Chen, B. Cheong, N. Perkins, Z. Yang, P. K. Herring, M. Aykol, S. J. Harris, R. D. Braatz, S. Ermon, W. C. Chueh, Nature 2020, 578, 397.
[17]
X.-G. Yang, T. Liu, Y. Gao, S. Ge, Y. Leng, D. Wang, C.-Y. Wang, Joule 2019, 3, 3002.
[18]
M. M. Besli, A. Subbaraman, F. R. Pour Safaei, C. Johnston, G. Schneider, N. Ravi, J. Christensen, Y. Liu, M. M. Doeff, M. Metzger, S. Kuppan, Adv. Energy Mater. 2021, 11, 2003019.
[19]
Y. Zeng, D. Chalise, S. D. Lubner, S. Kaur, R. S. Prasher, Energy Storage Mater. 2021, 41, 264.
[20]
Y. Liu, Y. Luo, IEEE Trans. Ind. Electron. 2010, 57, 3963.
[21]
I. H. Son, J. H. Park, S. Park, K. Park, S. Han, J. Shin, S.-G. Doo, Y. Hwang, H. Chang, J. W. Choi, Nat. Commun. 2017, 8, 1561.
[22]
B. Ng, X. Peng, E. Faegh, W. E. Mustain, J. Mater. Chem. A 2020, 8, 2712.
[23]
R. Mo, F. Li, X. Tan, P. Xu, R. Tao, G. Shen, X. Lu, F. Liu, L. Shen, B. Xu, Q. Xiao, X. Wang, C. Wang, J. Li, G. Wang, Y. Lu, Nat. Commun. 2019, 10, 1474.
[24]
J. Zheng, M. H. Engelhard, D. Mei, S. Jiao, B. J. Polzin, J.-G. Zhang, W. Xu, Nat. Energy 2017, 2, 17012.
[25]
Y. Tang, J. Deng, W. Li, O. I. Malyi, Y. Zhang, X. Zhou, S. Pan, J. Wei, Y. Cai, Z. Chen, X. Chen, Adv. Energy Mater. 2017, 29, 1701828.
[26]
H.-H. Sun, A. Dolocan, J. A. Weeks, R. Rodriguez, A. Heller, C. B. Mullins, J. Mater. Chem. A 2019, 7, 17782.
[27]
L. Qiu, Z. Shao, D. Wang, W. Wang, F. Wang, J. Wang, Carbohydr. Polym. 2014, 111, 588.
[28]
L. Qiu, Z. Shao, D. Wang, F. Wang, W. Wang, J. Wang, Carbohydr. Polym. 2014, 112, 532.
[29]
L. Qiu, Z. Shao, D. Wang, F. Wang, W. Wang, J. Wang, Cellulose 2014, 21, 2789.
[30]
K. C. Kil, U. Paik, Macromol. Res. 2015, 23, 719.
[31]
H. Park, D. Lee, T. Song, Ind. Eng. Chem. Res. 2018, 57, 8895.
[32]
D. O. Shin, H. Kim, S. Jung, S. Byun, J. Choi, M. P. Kim, J. Y. Kim, S. H. Kang, Y.-S. Park, S. Y. Hong, M. Cho, Y.-G. Lee, K. Cho, Y. M. Lee, Energy Stor. Mater. 2022, 49, 492.
[33]
S. Byun, J. Choi, Y. Roh, D. Song, M.-H. Ryou, Y. M. Lee, Electrochim. Acta 2020, 332, 135471.
[34]
S. Byun, Y. Roh, K. M. Kim, M.-H. Ryou, Y. M. Lee, Appl. Mater. Today 2020, 21, 100809.
[35]
J. Xu, X. Wang, N. Yuan, B. Hu, J. Ding, S. Ge, J. Power Sources 2019, 430, 74.
[36]
J. Park, K. T. Kim, D. Y. Oh, D. Jin, D. Kim, Y. S. Jung, Y. M. Lee, Adv. Energy Mater. 2020, 10, 2001563.
[37]
J. Y. Kim, J. Park, M. J. Lee, S. H. Kang, D. O. Shin, J. Oh, J. Kim, K. M. Kim, Y.-G. Lee, Y. M. Lee, ACS Energy Lett. 2020, 5, 2995.
[38]
T. A. Pham, K. E. Kweon, A. Samanta, V. Lordi, J. E. Pask, J. Phys. Chem. C 2017, 121, 21913.
[39]
K. Xu, A. von Cresce, U. Lee, Langmuir 2010, 26, 11538.
[40]
Y. Yamada, Y. Iriyama, T. Abe, Z. Ogumi, Langmuir 2009, 25, 12766.
[41]
E. Giacomazzi, F. R. Picchia, N. Arcidiacono, Comb. Theory Model. 2008, 12, 135.
[42]
K.-H. Chen, V. Goel, M. J. Namkoong, M. Wied, S. Muller, V. Wood, J. Sakamoto, K. Thornton, N. P. Dasgupta, Adv. Energy Mater. 2020, 11, 2003336.
[43]
Itsuo Nishiyama, Kenzo Takahashi, Journal of the Color Materials Association of Japan 1989, 62, 744.
[44]
B. Son, M. H. Ryou, J. Choi, T. Lee, H. Kyun Yu, J. H. Kim, Y. M. Lee, ACS Appl. Mater. Interfaces 2014, 6, 526.
[45]
K. Kim, S. Byun, I. Cho, M. H. Ryou, Y. M. Lee, ACS Appl. Mater. Interfaces 2016, 8, 23688.
[46]
K. Kim, S. Byun, J. Choi, S. Hong, M. H. Ryou, Y. M. Lee, ChemPhysChem 2018, 19, 1627.

RIGHTS & PERMISSIONS

2022 2022 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
PDF

Accesses

Citations

Detail

Sections
Recommended

/