Cation-Anion Redox Active Organic Complex for High Performance Aqueous Zinc Ion Battery
Lilin Zhang, Yining Chen, Zongyuan Jiang, Jingwei Chen, Cong Wei, Wenzhuo Wu, Shaohui Li, Qun Xu
Cation-Anion Redox Active Organic Complex for High Performance Aqueous Zinc Ion Battery
Organic redox compounds are attractive cathode materials in aqueous zinc-ion batteries owing to their low cost, environmental friendliness, multiple-electron-transfer reactions, and resource sustainability. However, the realized energy density is constrained by the limited capacity and low voltage. Herein, copper-tetracyanoquinodimethane (CuTCNQ), an organic charge-transfer complex is evaluated as a zinc-ion battery cathode owing to the good electron acceptation ability in the cyano groups that improves the voltage output. Through electrochemical activation, electrolyte optimization, and adoption of graphene-based separator, CuTCNQ-based aqueous zinc-ion batteries deliver much improved rate performance and cycling stability with anti-self-discharge properties. The structural evolution of CuTCNQ during discharge/charge are investigated by ex situ Fourier transform infra-red (FT-IR) spectra, ex situ X-ray photoelectron spectroscopy (XPS), and in situ ultraviolet visible spectroscopy (UV-vis), revealing reversible redox reactions in both cuprous cations (Cu+) and organic anions (TCNQx-1), thus delivering a high voltage output of 1.0 V and excellent discharge capacity of 158 mAh g-1. The remarkable electrochemical performance in Zn//CuTCNQ is ascribed to the strong inductive effect of cyano groups in CuTCNQ that elevated the voltage output and the graphene-modified separator that inhibited CuTCNQ dissolution and shuttle effect in aqueous electrolytes.
cathode materials / cyano groups / electrochemical activation / organic charge-transfer complex / zinc-ion battery
[1] |
D. Kundu, B. D. Adams, V. Duffort, S. H. Vajargah, L. F. Nazar, Nat. Energy 2016, 1, 16119.
|
[2] |
G. J. Liang, C. Y. Zhi, Nat. Nanotechnol. 2021, 16, 854.
|
[3] |
L. E. Blanc, D. Kundu, L. F. Nazar, Joule 2020, 4, 771.
|
[4] |
N. Zhang, X. Chen, M. Yu, Z. Niu, F. Cheng, J. Chen, Chem. Soc. Rev. 2020, 49, 4203.
|
[5] |
H. Liu, J.-G. Wang, Z. You, C. Wei, F. Kang, B. Wei, Mater. Today 2021, 42, 73.
|
[6] |
L. Ma, M. A. Schroeder, O. Borodin, T. P. Pollard, M. S. Ding, C. S. Wang, K. Xu, Nat. Energy 2020, 5, 743.
|
[7] |
Z. Wang, J. Huang, Z. Guo, X. Dong, Y. Liu, Y. Wang, Y. Xia, Joule 2019, 3, 1289.
|
[8] |
X. Jia, C. Liu, Z. G. Neale, J. Yang, G. Cao, Chem. Rev. 2020, 120, 7795.
|
[9] |
Q. Li, A. Chen, D. H. Wang, Z. X. Pei, C. Y. Zhi, Joule 2022, 6, 273.
|
[10] |
Y. Li, Z. H. Wang, Y. Cai, M. E. Pam, Y. K. Yang, D. H. Zhang, Y. Wang, S. Z. Huang, Energy Environ. Mater. 2021, 5, 823.
|
[11] |
Z. G. Hou, X. Q. Zhang, J. W. Chen, Y. T. Qian, L. F. Chen, P. S. Lee, Adv. Energy Mater. 2022, 12, 2104053.
|
[12] |
Y. J. Zhao, P. J. Zhang, J. R. Liang, X. Y. Xia, L. T. Ren, L. Song, W. Liu, X. M. Sun, Energy Storage Mater. 2022, 47, 424.
|
[13] |
C. Zhong, B. Liu, J. Ding, X. R. Liu, Y. W. Zhong, Y. Li, C. B. Sun, X. P. Han, Y. D. Deng, N. Q. Zhao, W. B. Hu, Nat. Energy 2020, 5, 440.
|
[14] |
S. Zheng, D. Shi, D. Yan, Q. Wang, T. Sun, T. Ma, L. Li, D. He, Z. Tao, J. Chen, Angew. Chem. 2022, 134, e202117511.
|
[15] |
Y. Wang, C. Wang, Z. Ni, Y. Gu, B. Wang, Z. Guo, Z. Wang, D. Bin, J. Ma, Y. Wang, Adv. Mater. 2020, 32, e2000338.
|
[16] |
X. Gong, J. Chen, P. S. Lee, Batteries Supercaps 2021, 4, 1529.
|
[17] |
C. Li, X. Xie, S. Liang, J. Zhou, Energy Environ. Mater. 2020, 3, 146.
|
[18] |
L. Yan, Y. Zhang, Z. Ni, Y. Zhang, J. Xu, T. Kong, J. Huang, W. Li, J. Ma, Y. Wang, J. Am. Chem. Soc. 2021, 143, 15369.
|
[19] |
S. Zheng, Q. Wang, Y. Hou, L. Li, Z. Tao, J. Energy Chem. 2021, 63, 87.
|
[20] |
Y. Chen, J. Li, Q. Zhu, K. Fan, Y. Cao, G. Zhang, C. Zhang, Y. Gao, J. Zou, T. Zhai, C. Wang, Angew. Chem. 2022, 61, e202116289.
|
[21] |
F. Wan, L. L. Zhang, X. Y. Wang, S. S. Bi, Z. Q. Niu, J. Chen, Adv. Funct. Mater. 2018, 28, 1804975.
|
[22] |
C. Han, J. Zhu, C. Zhi, H. Li, J. Mater. Chem. A 2020, 8, 15479.
|
[23] |
K. W. Nam, S. S. Park, R. dos Reis, V. P. Dravid, H. Kim, C. A. Mirkin, J. F. Stoddart, Nat. Commun. 2019, 10, 4948.
|
[24] |
H. Zhang, L. Zhong, J. Xie, F. Yang, X. Liu, X. Lu, Adv. Mater. 2021, 33, e2101857.
|
[25] |
H. Zhang, Y. Fang, F. Yang, X. Liu, X. Lu, Energy Environ. Sci. 2020, 13, 2515.
|
[26] |
Q. Zhao, W. Huang, Z. Luo, L. Liu, Y. Lu, Y. Li, L. Li, J. Hu, H. Ma, J. Chen, Sci. Adv. 2018, 4, eaao1761.
|
[27] |
B. He, Q. Zhang, P. Man, Z. Zhou, C. Li, Q. Li, L. Xie, X. Wang, H. Pang, Y. Yao, Nano Energy 2019, 64, 103935.
|
[28] |
X. Pu, B. Jiang, X. Wang, W. Liu, L. Dong, F. Kang, C. Xu, Nano-Micro Lett. 2020, 12, 152.
|
[29] |
C. Fang, Y. Huang, L. Yuan, Y. Liu, W. Chen, Y. Huang, K. Chen, J. Han, Q. Liu, Y. Huang, Angew. Chem. 2017, 56, 6793.
|
[30] |
J. Ma, E. Zhou, C. Fan, B. Wu, C. Li, Z. H. Lu, J. Li, Chem. Commun. 2018, 54, 5578.
|
[31] |
S. Zhang, S. Long, H. Li, Q. Xu, Chem. Eng. J. 2020, 400, 125898.
|
[32] |
Y. Zheng, J. Li, D. Ji, H. Dong, L. Li, H. Fuchs, W. Hu, Small 2021, 17, 2004143.
|
[33] |
K. Xiao, J. Tao, Z. Pan, A. A. Puretzky, I. N. Ivanov, S. J. Pennycook, D. B. Geohegan, Angew. Chem. 2007, 46, 2650.
|
[34] |
A. Nafady, T. H. Le, N. Vo, N. L. Haworth, A. M. Bond, L. L. Martin, Inorg. Chem. 2014, 53, 2268.
|
[35] |
C. Fang, Z. Ye, Y. Wang, X. Zhao, Y. Huang, R. Zhao, J. Liu, J. Han, Y. Huang, J. Mater. Chem. A 2019, 7, 22398.
|
[36] |
M. Li, Y. Wan, J.-K. Huang, A. H. Assen, C.-E. Hsiung, H. Jiang, Y. Han, M. Eddaoudi, Z. Lai, J. Ming, L.-J. Li, ACS Energy Lett. 2017, 2, 2362.
|
[37] |
X. Xie, G. Fang, W. Xu, J. Li, M. Long, S. Liang, G. Cao, A. Pan, Small 2021, 17, e2101944.
|
[38] |
D. Xu, Z. Cao, Z. Ye, H. Zhang, L. Wang, M. John, P. Dong, S. Gao, J. Shen, M. Ye, Chem. Eng. J. 2021, 417, 129245.
|
[39] |
F. Guo, Z. Huang, M. Wang, W.-L. Song, A. Lv, X. Han, J. Tu, S. Jiao, Energy Storage Mater. 2020, 33, 250.
|
[40] |
Y. Zhong, Y. Li, J. Meng, X. Lin, Z. Huang, Y. Shen, Y. Huang, Energy Storage Mater. 2021, 43, 492.
|
[41] |
Q. Wang, X. Xu, G. Yang, Y. Liu, X. Yao, Chem. Commun. 2020, 56, 11859.
|
[42] |
J. Balach, T. Jaumann, M. Klose, S. Oswald, J. Eckert, L. Giebeler, Adv. Funct. Mater. 2015, 25, 5285.
|
[43] |
F. Pei, L. Lin, A. Fu, S. Mo, D. Ou, X. Fang, N. Zheng, Joule 2018, 2, 323.
|
[44] |
R. Hao, W. Qian, L. Zhang, Y. Hou, Chem. Commun. 2008, 48, 6576.
|
[45] |
K. Parvez, Z.-S. Wu, R. Li, X. Liu, R. Graf, X. Feng, K. Muellen, J. Am. Chem. Soc. 2014, 136, 6083.
|
[46] |
U. Mittal, F. Colasuonno, A. Rawal, M. Lessio, D. Kundu, Energy Storage Mater. 2022, 46, 129.
|
[47] |
N. Wang, X. Dong, B. Wang, Z. Guo, Z. Wang, R. Wang, X. Qiu, Y. Wang, Angew. Chem. 2020, 59, 14577.
|
[48] |
N. Wang, Z. Guo, Z. Ni, J. Xu, X. Qiu, J. Ma, P. Wei, Y. Wang, Angew. Chem. 2021, 60, 20826.
|
[49] |
T. Sun, Z. J. Li, Y. F. Zhi, Y. J. Huang, H. J. Fan, Q. Zhang, Adv. Funct. Mater. 2021, 31, 2010049.
|
[50] |
Y. Liu, M. Huang, F. Xiong, J. Zhu, Q. An, Chem. Eng. J. 2022, 428, 131092.
|
[51] |
M. Yu, N. Chandrasekhar, R. K. M. Raghupathy, K. H. Ly, H. Zhang, E. Dmitrieva, C. Liang, X. Lu, T. D. Kuhne, H. Mirhosseini, I. M. Weidinger, X. Feng, J. Am. Chem. Soc. 2020, 142, 19570.
|
[52] |
N. N. Liu, X. Wu, Y. Zhang, Y. Y. Yin, C. Z. Sun, Y. C. Mao, L. S. Fan, N. Q. Zhang, Adv. Sci. 2020, 7, 2000146.
|
[53] |
D. X. Xu, Z. Y. Cao, Z. L. Ye, H. Zhang, L. P. Zhang, M. John, P. Dong, S. P. Gao, J. F. Shen, M. X. Ye, Chem. Eng. J. 2021, 417, 129245.
|
[54] |
R. Trocoli, F. La Mantia, ChemSusChem 2015, 8, 481.
|
[55] |
Y. X. Zeng, X. F. Lu, S. L. Zhang, D. Y. Luan, S. Li, X. W. Lou, Angew. Chem. 2021, 60, 22189.
|
[56] |
X. Zheng, R. Luo, T. Ahmad, J. Sun, S. Liu, N. Chen, M. Wang, Y. Yuan, M. Chuai, T. Jiang, W. Chen, Energy Environ. Mater. 2022,
CrossRef
Google scholar
|
/
〈 | 〉 |