High-Performance and Large-Area Inverted Perovskite Solar Cells Based on NiOx Films Enabled with A Novel Microstructure-Control Technology

Guibin Shen, Xin Li, Yuqin Zou, Hongye Dong, Dongping Zhu, Yanglin Jiang, Xin Ren Ng, Fen Lin, Peter Müller-Buschbaum, Cheng Mu

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (1) : 12504. DOI: 10.1002/eem2.12504
RESEARCH ARTICLE

High-Performance and Large-Area Inverted Perovskite Solar Cells Based on NiOx Films Enabled with A Novel Microstructure-Control Technology

Author information +
History +

Abstract

The improvement in the efficiency of inverted perovskite solar cells (PSCs) is significantly limited by undesirable contact at the NiOX/perovskite interface. In this study, a novel microstructure-control technology is proposed for fabrication of porous NiOX films using Pluronic P123 as the structure-directing agent and acetylacetone (AcAc) as the coordination agent. The synthesized porous NiOX films enhanced the hole extraction efficiency and reduced recombination defects at the NiOX/perovskite interface. Consequently, without any modification, the power conversion efficiency (PCE) of the PSC with MAPbI3 as the absorber layer improved from 16.50% to 19.08%. Moreover, the PCE of the device composed of perovskite Cs0.05(MA0.15FA0.85)0.95Pb(I0.85Br0.15)3 improved from 17.49% to 21.42%. Furthermore, the application of the fabricated porous NiOX on fluorine-doped tin oxide (FTO) substrates enabled the fabrication of large-area PSCs (1.2 cm2) with a PCE of 19.63%. This study provides a novel strategy for improving the contact at the NiOX/perovskite interface for the fabrication of high-performance large-area perovskite solar cells.

Keywords

interfacial contact / inverted and large-area perovskite solar cells / photovoltaic materials / porous NiOX films / renewable energy

Cite this article

Download citation ▾
Guibin Shen, Xin Li, Yuqin Zou, Hongye Dong, Dongping Zhu, Yanglin Jiang, Xin Ren Ng, Fen Lin, Peter Müller-Buschbaum, Cheng Mu. High-Performance and Large-Area Inverted Perovskite Solar Cells Based on NiOx Films Enabled with A Novel Microstructure-Control Technology. Energy & Environmental Materials, 2024, 7(1): 12504 https://doi.org/10.1002/eem2.12504

References

[1]
J. J. Yoo, G. Seo, M. R. Chua, T. G. Park, Y. Lu, F. Rotermund, Y. K. Kim, C. S. Moon, N. J. Jeon, J. P. Correa-Baena, V. Bulovic, S. S. Shin, M. G. Bawendi, J. Seo, Nature 2021, 590, 587.
[2]
L. K. Reb, M. Böhmer, B. Predeschly, S. Grott, C. L. Weindl, G. I. Ivandekic, R. Guo, C. Dreißigacker, R. Gernhäuser, A. Meyer, P. Müller-Buschbaum, Joule 1880, 2020, 4.
[3]
X. Li, W. Zhang, X. Guo, C. Lu, J. Wei, J. Fang, Science 2022, 375, 434.
[4]
S. Liu, R. Chen, X. Tian, Z. Yang, J. Zhou, F. Ren, S. Zhang, Y. Zhang, M. Guo, Y. Shen, Z. Liu, W. Chen, Nano Energy 2022, 94, 106935.
[5]
Q. S. Zhou, J. M. Qiu, Y. F. Wang, M. Yu, J. H. Liu, X. L. Zhang, ACS Energy Lett. 2021, 6, 1596.
[6]
B. Chen, H. Chen, Y. Hou, J. Xu, S. Teale, K. Bertens, H. J. Chen, A. Proppe, Q. L. Zhou, D. N. Yu, K. M. Xu, M. Vafaie, Y. Liu, Y. T. Dong, E. H. Jung, C. Zheng, T. Zhu, Z. J. Ning, E. H. Sargent, Adv. Mater. 2021, 33, 41.
[7]
S. Huang, Z. Liu, J. Xu, D. Zhang, H. Dong, Z. Wu, L. Duan, Chem. Eng. J. 2022, 430, 132986.
[8]
E. Aktas, N. Phung, H. Kobler, D. A. Gonzalez, M. Mendez, I. Kafedjiska, S. H. Turren-Cruz, R. Wenisch, I. Lauermann, A. Abate, E. Palomares, Energy Environ. Sci. 2021, 14, 3976.
[9]
P. Wang, X. Chen, T. Liu, C. H. Hou, Y. Tian, X. Xu, Z. Chen, P. Ran, T. Jiang, C. H. Kuan, B. Yan, J. Yao, J. J. Shyue, J. Qiu, Y. M. Yang, Small Methods 2022, 9, e2200048.
[10]
I. S. Yang, M. R. Sohn, S. D. Sung, Y. J. Kim, Y. J. Yoo, J. Kim, W. I. Lee, Nano Energy 2017, 32, 414.
[11]
V. E. Madhavan, I. Zimmermann, C. Roldán-Carmona, G. Grancini, M. Buffiere, A. Belaidi, M. K. Nazeeruddin, ACS Energy Lett. 2016, 1, 1112.
[12]
W. H. Sun, S. Y. Ye, H. X. Rao, Y. L. Li, Z. W. Liu, L. X. Xiao, Z. J. Chen, Z. Q. Bian, C. H. Huang, Nanoscale 2016, 8, 15954.
[13]
P. Schulz, J. O. Tiepelt, J. A. Christians, I. Levine, E. Edri, E. M. Sanehira, G. Hodes, D. Cahen, A. Kahn, ACS Appl. Mater. Interfaces 2016, 8, 31491.
[14]
D. Li, C. Tong, W. Ji, Z. Fu, Z. Wan, Q. Huang, Y. Ming, A. Mei, Y. Hu, Y. Rong, H. Han, ACS Sustain. Chem. Eng. 2018, 7, 2619.
[15]
Q. Cao, Y. J. Li, H. Zhang, J. B. Yang, J. Han, T. Xu, S. J. Wang, Z. S. Wang, B. Y. Gao, J. S. Zhao, X. Q. Li, X. Y. Ma, S. M. Zakeeruddin, W. E. I. Sha, X. H. Li, M. Gratzel, Sci. Adv. 2021, 7, 28.
[16]
W. Chen, Y. Zhou, G. Chen, Y. Wu, B. Tu, F. Z. Liu, L. Huang, A. M. C. Ng, A. B. Djurišić, Z. He, Adv. Energy Mater. 2019, 9, 1803872.
[17]
T. Abzieher, S. Moghadamzadeh, F. Schackmar, H. Eggers, F. Sutterlüti, A. Farooq, D. Kojda, K. Habicht, R. Schmager, A. Mertens, R. Azmi, L. Klohr, J. A. Schwenzer, M. Hetterich, U. Lemmer, B. S. Richards, M. Powalla, U. W. Paetzold, Adv. Energy Mater. 2019, 9, 1802995.
[18]
X. Yin, J. Zhai, P. Du, W.-H. Chen, L. Song, J. Xiong, F. Ko, Chem. Eng. J. 2022, 439, 135703.
[19]
H. Chen, S. Teale, B. Chen, Y. Hou, L. Grater, T. Zhu, K. Bertens, S. M. Park, H. R. Atapattu, Y. Gao, M. Wei, A. K. Johnston, Q. Zhou, K. Xu, D. Yu, C. Han, T. Cui, E. H. Jung, C. Zhou, W. Zhou, A. H. Proppe, S. Hoogland, F. Laquai, T. Filleter, K. R. Graham, Z. Ning, E. H. Sargent, Nat. Photonics 2022, 51, 4595.
[20]
S. Zhumagali, F. H. Isikgor, P. Maity, J. Yin, E. Ugur, M. De Bastiani, A. S. Subbiah, A. J. Mirabelli, R. Azmi, G. T. Harrison, J. Troughton, E. Aydin, J. Liu, T. Allen, A. U. Rehman, D. Baran, O. F. Mohammed, S. De Wolf, Adv. Energy Mater. 2021, 11, 2101662.
[21]
J. Zhang, J. Long, Z. Huang, J. Yang, X. Li, R. Dai, W. Sheng, L. Tan, Y. Chen, Chem. Eng. J. 2021, 426, 131357.
[22]
D. Saranin, S. Pescetelli, A. Pazniak, D. Rossi, A. Liedl, A. Yakusheva, L. Luchnikov, D. Podgorny, P. Gostischev, S. Didenko, A. Tameev, D. Lizzit, M. Angelucci, R. Cimino, R. Larciprete, A. Agresti, A. Di Carlo, Nano Energy 2021, 82, 105771.
[23]
Y. Bai, H. Chen, S. Xiao, Q. Xue, T. Zhang, Z. Zhu, Q. Li, C. Hu, Y. Yang, Z. Hu, F. Huang, K. S. Wong, H.-L. Yip, S. Yang, Adv. Funct. Mater. 2016, 26, 2950.
[24]
X. Yin, J. Zhai, P. Du, N. Li, L. Song, J. Xiong, F. Ko, ChemSusChem 2020, 13, 1006.
[25]
X. Yin, J. Zhai, L. Song, P. Du, N. Li, Y. Yang, J. Xiong, F. Ko, ACS Appl. Mater. Interfaces 2019, 11, 44308.
[26]
G. Shen, Q. Cai, H. Dong, X. Wen, X. Xu, C. Mu, ACS Sustain. Chem. Eng. 2021, 9, 3580.
[27]
X. Duan, Z. Huang, C. Liu, J. Yang, L. Tan, Y. Chen, Chem. Commun. 2019, 55, 3666.
[28]
N. Dharmaraj, P. Prabu, S. Nagarajan, C. H. Kim, J. H. Park, H. Y. Kim, Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 2006, 128, 111.
[29]
P. Subalakshmi, A. Sivashanmugam, J. Alloys Compd. 2016, 662, 200.
[30]
J. Zhang, Y. Deng, J. Wei, Z. Sun, D. Gu, H. Bongard, C. Liu, H. Wu, B. Tu, F. Schüth, D. Zhao, Chem. Mater. 2009, 21, 3996.
[31]
W. Luo, Y. Li, J. Dong, J. Wei, J. Xu, Y. Deng, D. Zhao, Angew. Chem. Int. Ed. 2013, 52, 10505.
[32]
T. Li, S. Wang, J. Yang, X. Pu, B. Gao, Z. He, Q. Cao, J. Han, X. Li, Nano Energy 2021, 82, 105742.
[33]
S. Li, H. Lu, Z. Kan, L. Zhu, F. Wu, Chem. Eng. J. 2021, 419, 129581.
[34]
R. Garai, R. K. Gupta, A. S. Tanwar, M. Hossain, P. K. Iyer, Chem. Mater. 2021, 33, 5709.
[35]
Y. Zhu, Y. Zhao, J. Ma, X. Cheng, J. Xie, P. Xu, H. Liu, H. Liu, H. Zhang, M. Wu, A. A. Elzatahry, A. Alghamdi, Y. Deng, D. Zhao, J. Am. Chem. Soc. 2017, 139, 10365.
[36]
J. Zhang, Y. Deng, D. Gu, S. Wang, L. She, R. Che, Z.-S. Wang, B. Tu, S. Xie, D. Zhao, Adv. Energy Mater. 2011, 1, 241.
[37]
L. Xie, Z. Cao, J. Wang, A. Wang, S. Wang, Y. Cui, Y. Xiang, X. Niu, F. Hao, L. Ding, Nano Energy 2020, 74, 104846.
[38]
H. Hou, T. Hu, F. Zhang, R. Liu, J. He, C. Liu, Y. Yu, D. Chen, Q. Wu, M. Zhang, H. Yu, J. Energy Chem. 2022, 68, 35.
[39]
L. Zhao, X. Sun, Q. Yao, S. Huang, L. Zhu, J. Song, Y. Zhao, Y. Qiang, Adv. Mater. Interfaces 2021, 9, 2101562.
[40]
Q. Liao, Y. Wang, Z. Zhang, K. Yang, Y. Shi, K. Feng, B. Li, J. Huang, P. Gao, X. Guo, J. Energy Chem. 2022, 68, 87.
[41]
J. Li, W. Qi, Y. Li, S. Jiao, H. Ling, P. Wang, X. Zhou, K. Sohail, G. Wang, G. Hou, J. Luo, Y. Zhao, L. Ding, Y. Li, X. Zhang, J. Energy Chem. 2022, 67, 138.
[42]
Y. Q. Zou, H. Y. Wang, Y. J. Qin, C. Mu, Q. Li, D. S. Xu, J. P. Zhang, Adv. Funct. Mater. 2019, 29, 1805810.
[43]
Q. Cao, T. Wang, J. Yang, Y. Zhang, Y. Li, X. Pu, J. Zhao, H. Chen, X. Li, I. Tojiboyev, J. Chen, L. Etgar, H. Salari, X. Li, Adv. Funct. Mater. 2022, 32, 2201036.
[44]
J. Xia, C. Liang, H. Gu, S. Mei, S. Li, N. Zhang, S. Chen, Y. Cai, G. Xing, Energy Environ. Mater. 2022,
CrossRef Google scholar
[45]
S. Wang, Z. He, J. Yang, T. Li, X. Pu, J. Han, Q. Cao, B. Gao, X. Li, J. Energy Chem. 2021, 60, 169.
[46]
Y. Cui, S. Wang, C. Li, A. Wang, J. Ren, C. Yang, B. Chen, Z. Wang, F. Hao, Green Chem. 2021, 23, 3633.
[47]
S. Li, J. Xia, C. Liang, Z. Wen, Z. Mu, K. Wang, H. Gu, S. Mei, H. Pan, J. Chen, G. Xing, S. Chen, Chem. Eng. J. 2022, 442, 135895.
[48]
Y. Du, C. Xin, W. Huang, B. Shi, Y. Ding, C. Wei, Y. Zhao, Y. Li, X. Zhang, ACS Sustain. Chem. Eng. 2018, 6, 16806.

RIGHTS & PERMISSIONS

2022 2022 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
PDF

Accesses

Citations

Detail

Sections
Recommended

/