Ferroelectricity Induced by Oxygen Vacancies in Rhombohedral ZrO2 Thin Films

Veniero Lenzi, José P. B. Silva, Břetislav Šmíd, Vladimir Matolín, Cosmin M. Istrate, Corneliu Ghica, Judith L. MacManus-Driscoll, Luís Marques

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (1) : 12500. DOI: 10.1002/eem2.12500
RESEARCH ARTICLE

Ferroelectricity Induced by Oxygen Vacancies in Rhombohedral ZrO2 Thin Films

Author information +
History +

Abstract

Rhombohedral phase HfxZr1-xO2 (HZO, x from 0 to 1) films are promising for achieving robust ferroelectric polarization without the need for an initial wake-up pre-cycling, as is normally the case for the more commonly studied orthorhombic phase. However, a large spontaneous polarization observed in rhombohedral films is not fully understood, and there are also large discrepancies between experimental and theoretical predictions. In this work, in rhombohedral ZrO2 thin films, we show that oxygen vacancies are not only a key factor for stabilizing the phase, but they are also a source of ferroelectric polarization in the films. This is shown experimentally through the investigation of the structural properties, chemical composition and the ferroelectric properties of the films before and after an annealing at moderate temperature (400 °C) in an oxygen environment to reduce the VO concentration compared. The experimental work is supported by density functional theory (DFT) calculations which show that the rhombohedral phase is the most stable one in highly oxygen defective ZrO2 films. The DFT calculations also show that VO contribute to the ferroelectric polarization. Our findings reveal the importance of VO for stabilizing rhombohedral ZrO2 thin films with superior ferroelectric properties.

Keywords

charged defects / ferroelectric polarization / rhombohedral phase / stability / zirconia

Cite this article

Download citation ▾
Veniero Lenzi, José P. B. Silva, Břetislav Šmíd, Vladimir Matolín, Cosmin M. Istrate, Corneliu Ghica, Judith L. MacManus-Driscoll, Luís Marques. Ferroelectricity Induced by Oxygen Vacancies in Rhombohedral ZrO2 Thin Films. Energy & Environmental Materials, 2024, 7(1): 12500 https://doi.org/10.1002/eem2.12500

References

[1]
J. Kim, S. Saremi, M. Acharya, G. Velarde, E. Parsonnet, P. Donahue, A. Qualls, D. Garcia, L. W. Martin, Science 2020, 369, 202081.
[2]
A. Kashir, S. Oh, H. Hwang, Adv. Eng. Mater. 2021, 23, 2000791.
[3]
K. P. Kelley, A. N. Morozovska, E. A. Eliseev, V. Sharma, D. E. Yilmaz, A. C. T. van Duin, P. Ganesh, A. Borisevich, S. Jesse, P. Maksymovych, N. Balke, S. V. Kalinin, R. K. Vasudevan, Adv. Mater. 2022, 34, 2106426.
[4]
D.-S. Park, M. Hadad, L. M. Rimer, R. Ignatans, D. Spirito, V. Esposito, V. Tileli, N. Gauquelin, D. Chezganov, D. Jannis, J. Verbeeck, S. Gorfman, N. Pryds, P. Muralt, D. Damjanovic, Science 2022, 375, 653.
[5]
G. F. Nataf, M. Guennou, J. M. Gregg, D. Meier, J. Hlinka, E. K. H. Salje, J. Kreisel, Nat. Rev. Phys. 2020, 2, 634.
[6]
T. S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, U. Böttger, Appl. Phys. Lett. 2011, 99, 102903.
[7]
S. Jachalke, T. Schenk, M. H. Park, U. Schroeder, T. Mikolajick, H. Stöcker, E. Mehner, D. C. Meyer, Appl. Phys. Lett. 2018, 112, 142901.
[8]
J. P. B. Silva, J. M. B. Silva, K. C. Sekhar, H. Palneedi, M. C. Istrate, R. F. Negrea, C. Ghica, A. Chahboun, M. Pereira, M. J. M. Gomesa, J. Mater. Chem. A 2020, 8, 14171.
[9]
M. Hoffmann, F. P. G. Fengler, M. Herzig, T. Mittmann, B. Max, U. Schroeder, R. Negrea, P. Lucian, S. Slesazeck, T. Mikolajick, Nature 2019, 565, 464.
[10]
T. Song, H. Tan, R. Bachelet, G. Saint-Girons, I. Fina, F. Sánchez, ACS Appl. Electron. Mater 2021, 3, 4809.
[11]
S. Chakraborty, M. K. Bera, G. K. Dalapati, D. Paramanik, S. Varma, P. K. Bose, S. Bhattacharya, C. K. Maiti, Semicond. Sci. Technol. 2006, 21, 467.
[12]
H. Mulaosmanovic, E. T. Breyer, S. Dünkel, S. Beyer, T. Mikolajick, S. Slesazeck, Nanotechnology 2021, 32, 502002.
[13]
S. J. Kim, J. Mohan, J. Lee, J. S. Lee, A. T. Lucero, C. D. Young, L. Colombo, S. R. Summerfelt, T. San, J. Kim, Appl. Phys. Lett. 2018, 112, 172902.
[14]
W.-Y. Liu, J.-J. Liao, J. Jiang, Y.-C. Zhou, Q. Chen, S.-T. Mo, Q. Yang, Q.- X. Peng, L.-M. Jiang, J. Mater. Chem. C 2020, 8, 3878.
[15]
Y. Wei, S. Matzen, T. Maroutian, G. Agnus, M. Salverda, P. Nukala, Q. Chen, J. Ye, P. Lecoeur, B. Noheda, Phys. Rev. Applied 2019, 12, 031001.
[16]
M. Halter, L. Bégon-Lours, V. Bragaglia, M. Sousa, B. J. Offrein, S. Abel, M. Luisier, J. Fompeyrine, ACS Appl. Mater. Interfaces 2020, 12, 17725.
[17]
P. D. Lomenzo, C.-C. Chung, C. Zhou, J. L. Jones, T. Nishida, Appl. Phys. Lett. 2017, 110, 232904.
[18]
J. P. B. Silva, K. C. Sekhar, H. Pan, J. L. MacManus-Driscoll, M. Pereira, ACS Energy Lett. 2021, 6, 2208.
[19]
J. P. B. Silva, K. C. Sekhar, R. F. Negrea, J. L. MacManus-Driscoll, L. Pintilie, Appl. Mater. Today 2022, 26, 101394.
[20]
M. Materano, P. D. Lomenzo, A. Kersch, M. H. Park, T. Mikolajick, U. Schroeder, Inorg. Chem. Front. 2021, 8, 2650.
[21]
Y. Wei, P. Nukala, M. Salverda, S. Matzen, H. J. Zhao, J. Momand, A. S. Everhardt, G. Agnus, G. R. Blake, P. Lecoeur, B. J. Kooi, J. Íñiguez, B. Dkhil, B. Noheda, Nat. Mater. 2018, 17, 1095.
[22]
J. P. B. Silva, R. F. Negrea, M. C. Istrate, S. Dutta, H. Aramberri, J. Íñiguez, F. G. Figueiras, C. Ghica, K. C. Sekhar, A. L. Kholkin, ACS Appl. Mater. Interfaces 2021, 13, 51383.
[23]
P. Nukala, M. Ahmadi, Y. Wei, S. de Graaf, E. Stylianidis, T. Chakrabortty, S. Matzen, H. W. Zandbergen, A. Björling, D. Mannix, D. Carbone, B. Kooi, B. Noheda, Science 2021, 372, 630.
[24]
M. Zheng, Z. Yin, Y. Cheng, X. Zhang, J. Wu, J. Qi, Appl. Phys. Lett. 2021, 119, 172904.
[25]
R. He, H. Wu, S. Liu, H. Liu, Z. Zhong, Phys. Rev. B 2021, 104, L180102.
[26]
S. R. Taylor, S. M. McLennan, Rev. Geophys. 1995, 33, 241.
[27]
A. E. Boutaybi, T. Maroutian, L. Largeau, S. Matzen, P. Lecoeur, Phys. Rev. Mater. 2022, 6, 074406.
[28]
R. Materlik, C. Künneth, A. Kersch, J. Appl. Phys. 2015, 117, 134109.
[29]
M. D. Glinchuk, A. N. Morozovska, A. Lukowiak, W. Strȩk, M. V. Silibin, D. V. Karpinsky, Y. Kim, S. V. Kalinin, J. Alloys Compd. 2020, 830, 153628.
[30]
N. H. Fletcher, K. W. Lodge, Epitaxial Growth, Part B, Academic Press, New York, NY 1975,
[31]
S. Estandía, N. Dix, M. F. Chisholm, I. Fina, F. Sánchez, Cryst. Growth Des. 2020, 20, 3801.
[32]
M. Hoffmann, U. Schroeder, T. Schenk, T. Shimizu, H. Funakubo, O. Sakata, D. Pohl, M. Drescher, C. Adelmann, R. Materlik, A. Kersch, T. Mikolajick, J. Appl. Phys. 2015, 118, 072006.
[33]
H. Gu, J. Ding, Q. Zhong, Y. Zeng, F. Song, Int. J. Hydrog. Energy 2019, 44, 11808.
[34]
L. Baumgarten, T. Szyjka, T. Mittmann, M. Materano, Y. Matveyev, C. Schlueter, T. Mikolajick, U. Schroeder, M. Müller, Appl. Phys. Lett. 2021, 118, 032903.
[35]
T. Mittmann, T. Szyjka, H. Alex, M. C. Istrate, P. D. Lomenzo, L. Baumgarten, M. Müller, J. L. Jones, L. Pintilie, T. Mikolajick, U. Schroeder, Phys. Status Solidi RRL 2021, 15, 210001.
[36]
K. Lee, K. Park, H.-J. Lee, M. S. Song, K. C. Lee, J. Namkung, J. H. Lee, J. Park, S. C. Chae, Sci. Rep. 2021, 11, 6290.
[37]
D.-H. Choe, S. Kim, T. Moon, S. Jo, H. Bae, S.-G. Nam, Y. S. Lee, J. Heo, Mater. Today 2021, 50, 8.
[38]
G. M. Vanacore, L. F. Zagonel, N. Barrett, Surf. Sci. 2010, 604, 1674.
[39]
J. P. B. Silva, K. C. Sekhar, A. Almeida, J. A. Moreira, J. Martín-Sánchez, M. Pereira, A. Khodorov, M. J. M. Gomes, J. Appl. Phys. 2012, 112, 044105.
[40]
S. S. Cheema, D. Kwon, N. Shanker, R. dos Reis, S.-L. Hsu, J. Xiao, H. Zhang, R. Wagner, A. Datar, M. R. McCarter, C. R. Serrao, A. K. Yadav, G. Karbasian, C.-H. Hsu, A. J. Tan, L.-C. Wang, V. Thakare, X. Zhang, A. Mehta, E. Karapetrova, R. V. Chopdekar, P. Shafer, E. Arenholz, C. Hu, R. Proksch, R. Ramesh, J. Ciston, S. Salahuddin, Nature 2020, 580, 478.
[41]
H. Lee, D.-H. Choe, S. Jo, J.-H. Kim, H. H. Lee, H.-J. Shin, Y. Park, S. Kang, Y. Cho, S. Park, T. Moon, D. Eom, M. Leem, Y. Kim, J. Heo, E. Lee, H. Kim, ACS Appl. Mater. Interfaces 2021, 13, 36499.
[42]
S. S. Cheema, N. Shanker, S.-L. Hsu, Y. Rho, C.-H. Hsu, V. A. Stoica, Z. Zhang, J. W. Freeland, P. Shafer, C. P. Grigoropoulos, J. Ciston, S. Salahuddin, Science 2022, 376, 648.
[43]
Y. Zhang, Q. Yang, L. Tao, E. Y. Tsymbal, V. Alexandrov, Phys. Rev. Applied 2020, 14, 014068.
[44]
J. Wei, L. Jiang, M. Huang, Y. Wu, Y. S. Chen, Adv. Funct. Mater. 2021, 31, 2104913.
[45]
G. Kresse, J. Hafner, Phys. Rev. B 1993, 47, 558.
[46]
G. Kresse, Furthmüller , Comput. Mater. Sci. 1996, 6, 15.
[47]
G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.
[48]
G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.
[49]
J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. B 2008, 100, 136406.
[50]
R. Resta, Rev. Mod. Phys. 1994, 66, 899.
[51]
M. Chagas da Silva, M. Lorke, B. Aradi, M. Farzalipour Tabriz, T. Frauenheim, A. Rubio, D. Rocca, P. Déak, Phys. Rev. Lett. 2021, 126, 076401.
[52]
H. T. Stokes, D. M. Hatch, J. Appl. Crystallogr. 2005, 38, 237.
[53]
FINDSYM, https://stokes.byu.edu/iso/findsym.php (accessed: July 2022)
[54]
K. Momma, F. Izumi, J. Appl. Crystallogr. 2011, 44, 1272.

RIGHTS & PERMISSIONS

2022 2022 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
PDF

Accesses

Citations

Detail

Sections
Recommended

/