Mo2P Monolayer as a Superior Electrocatalyst for Urea Synthesis from Nitrogen and Carbon Dioxide Fixation: A Computational Study
Dongxu Jiao, Zhongxu Wang, Yuejie Liu, Qinghai Cai, Jingxiang Zhao, Carlos R. Cabrera, Zhongfang Chen
Mo2P Monolayer as a Superior Electrocatalyst for Urea Synthesis from Nitrogen and Carbon Dioxide Fixation: A Computational Study
Urea synthesis through the simultaneous electrocatalytic reduction of N2 and CO2 molecules under ambient conditions holds great promises as a sustainable alternative to its industrial production, in which the development of stable, highly efficient, and highly selective catalysts to boost the chemisorption, activation, and coupling of inert N2 and CO2 molecules remains rather challenging. Herein, by means of density functional theory computations, we proposed a new class of two-dimensional nanomaterials, namely, transition-metal phosphide monolayers (TM2P, TM = Ti, Fe, Zr, Mo, and W), as the potential electrocatalysts for urea production. Our results showed that these TM2P materials exhibit outstanding stability and excellent metallic properties. Interestingly, the Mo2P monolayer was screened out as the best catalyst for urea synthesis due to its small kinetic energy barrier (0.35 eV) for C-N coupling, low limiting potential (-0.39 V), and significant suppressing effects on the competing side reactions. The outstanding catalytic activity of the Mo2P monolayer can be ascribed to its optimal adsorption strength with the key *NCON species due to its moderate positive charges on the Mo active sites. Our findings not only propose a novel catalyst with high-efficiency and high-selectivity for urea production but also further widen the potential applications of metal phosphides in electrocatalysis.
C-N coupling / density functional theory / Mo2P monolayer / urea synthesis
[1] |
J. W. Erisman, M. A. Sutton, J. Galloway, Z. Klimont, W. Winiwarter, Nat. Geosci. 2008, 1, 636.
|
[2] |
C. Chen, N. He, S. Wang, Small Sci. 2021, 1, 2100070.
|
[3] |
Y. Liu, X. Zhao, L. Ye, Ind. Eng. Chem. Res. 2016, 55, 8743.
|
[4] |
C. Lv, L. Zhong, H. Liu, Z. Fang, C. Yan, M. Chen, Y. Kong, C. Lee, D. Liu, S. Li, J. Liu, L. Song, G. Chen, Q. Yan, G. Yu, Nat. Sustain. 2021, 4, 868.
|
[5] |
J. Zheng, L. Jiang, Y. Lyu, S. P. Jiang, S. Wang, Energy Environ. Mater. 2022, 5, 452.
|
[6] |
F. Wang, L. Xia, X. Li, W. Yang, Y. Zhao, J. Mao, Energy Environ. Mater. 2021, 4, 88.
|
[7] |
M. Xia, C. Mao, A. Gu, A. A. Tountas, C. Qiu, T. E. Wood, Y. F. Li, U. Ulmer, Y. Xu, C. J. Viasus, J. Ye, C. Qian, G. Ozin, Angew. Chem. Int. Ed. 2022, 61, e202110158.
|
[8] |
C. Zhu, M. Wang, C. Wen, M. Zhang, Y. Geng, G. Zhu, Z. Su, Adv. Sci. 2022, 9, 2105697.
|
[9] |
C. Lv, C. Lee, L. Zhong, H. Liu, J. Liu, L. Yang, C. Yan, W. Yu, H. H. Hng, Z. Qi, L. Song, S. Li, K. P. Loh, Q. Yan, G. Yu, ACS Nano 2022, 16, 8213.
|
[10] |
J. Li, J. Li, T. Liu, L. Chen, Y. Li, H. Wang, X. Chen, M. Gong, Z.-P. Liu, X. Yang, Angew. Chem. Int. Ed. 2021, 60, 26656.
|
[11] |
C. Chen, X. Zhu, X. Wen, Y. Zhou, L. Zhou, H. Li, L. Tao, Q. Li, S. Du, T. Liu, D. Yan, C. Xie, Y. Zou, Y. Wang, R. Chen, J. Huo, Y. Li, J. Cheng, H. Su, X. Zhao, W. Cheng, Q. Liu, H. Lin, J. Luo, J. Chen, M. Dong, K. Cheng, C. Li, S. Wang, Nat. Chem. 2020, 12, 717.
|
[12] |
M. Yuan, J. Chen, Y. Bai, Z. Liu, J. Zhang, T. Zhao, Q. Shi, S. Li, X. Wang, G. Zhang, Chem. Sci. 2021, 12, 6048.
|
[13] |
M. Yuan, J. Chen, Y. Bai, Z. Liu, J. Zhang, T. Zhao, Q. Wang, S. Li, H. He, G. Zhang, Angew. Chem. Int. Ed. 2021, 60, 10910.
|
[14] |
M. Yuan, H. Zhang, Y. Xu, R. Liu, R. Wang, T. Zhao, J. Zhang, Z. Liu, H. He, C. Yang, S. Zhang, G. Zhang, Chem Catal. 2022, 2, 309.
|
[15] |
M. Yuan, J. Chen, Y. Xu, R. Liu, T. Zhao, J. Zhang, Z. Ren, Z. Liu, C. Streb, H. He, C. Yang, S. Zhang, G. Zhang, Energy Environ. Sci. 2021, 14, 6605.
|
[16] |
H. Jin, C. Guo, X. Liu, J. Liu, A. Vasileff, Y. Jiao, Y. Zheng, S.-Z. Qiao, Chem. Rev. 2018, 118, 6337.
|
[17] |
J. Zhu, S. Li, Z. Zhuang, S. Gao, X. Hong, X. Pan, R. Yu, L. Zhou, L. V. Moskaleva, L. Mai, Energy Environ. Mater. 2022, 5, 231.
|
[18] |
X. Chia, M. Pumera, Nat. Catal. 2018, 1, 909.
|
[19] |
Z. Liu, T. Huang, H. Chang, F. Wang, J. Wen, H. Sun, M. Hossain, Q. Xie, Y. Zhao, Y. Wu, Energy Environ. Mater. 2021, 4, 255.
|
[20] |
S. Yang, G. Chen, A. G. Ricciardulli, P. Zhang, Z. Zhang, H. Shi, J. Ma, J. Zhang, P. W. M. Blom, X. Feng, Angew. Chem. Int. Ed. 2020, 59, 465.
|
[21] |
Z. Pu, T. Liu, I. S. Amiinu, R. Cheng, P. Wang, C. Zhang, P. Ji, W. Hu, J. Liu, S. Mu, Adv. Funct. Mater. 2020, 30, 2004009.
|
[22] |
Y. Shi, M. Li, Y. Yu, B. Zhang, Energy Environ. Sci. 2020, 13, 4564.
|
[23] |
X. Zhao, X. Kong, Z. Liu, Z. Li, Z. Xie, Z. Wu, F. He, X. Chang, P. Yang, J. Zheng, X. Li, Nano Today 2021, 40, 101245.
|
[24] |
S. Wang, G. Li, L. Chen, Z. Li, Z. Wu, X. Kong, T. Wang, F. He, P. Yang, Z. Liu, Funct. Mater. Lett. 2021, 14, 2130017.
|
[25] |
W. Zhu, C. Tang, D. Liu, J. Wang, A. M. Asiri, X. Sun, J. Mater. Chem. A 2016, 4, 7169.
|
[26] |
H. Lou, K. Qiu, G. Yang, ACS Appl. Mater. Inter. 2021, 13, 57422.
|
[27] |
Y. Sun, S. Wang, D. Jiao, F. Li, S. Qiu, Z. Wang, Q. Cai, J. Zhao, C. Sun, Chinese Chem. Lett. 2022, 33, 3987.
|
[28] |
Q. Liu, J. Xing, Z. Jiang, X. Jiang, Y. Wang, J. Zhao, Nanoscale 2020, 12, 6776.
|
[29] |
J. Wu, J.-H. Li, Y.-X. Yu, Sci. Technol. 2021, 11, 1419.
|
[30] |
S. Zheng, T. Yu, J. Lin, H. Lou, H. Xu, G. Yang, J. Mater. Chem. A 2019, 7, 25665.
|
[31] |
X. Zhu, X. Zhou, Y. Jing, Y. Li, Nat. Commun. 2021, 12, 4080.
|
[32] |
C. Zhu, C. Wen, M. Wang, M. Zhang, Y. Geng, Z. Su, Chem. Sci. 2022, 13, 1342.
|
[33] |
P. Roy, A. Pramanik, P. Sarkar, J. Phys. Chem. Lett. 2021, 12, 10837.
|
[34] |
G. Kresse, J. Hafner, Phys. Rev. B 1993, 47, 558.
|
[35] |
G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.
|
[36] |
P. E. Blöchl, Phys. Rev. B 1994, 50, 17953.
|
[37] |
G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.
|
[38] |
J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
|
[39] |
S. Grimme, J. Comput. Chem. 2006, 27, 1787.
|
[40] |
G. Henkelman, B. P. Uberuaga, H. Jónsson, J. Chem. Phys. 2000, 113, 9901.
|
[41] |
J. Heyd, G. E. Scuseria, M. Ernzerhof, J. Chem. Phys. 2003, 118, 8207.
|
[42] |
J. Paier, M. Marsman, K. Hummer, G. Kresse, I. C. Gerber, J. G. Ángyán, J. Chem. Phys. 2006, 124, 154709.
|
[43] |
G. J. Martyna, M. L. Klein, M. Tuckerman, J. Chem. Phys. 1992, 97, 2635.
|
[44] |
X. Gonze, C. Lee, Phys. Rev. B 1997, 55, 10355.
|
[45] |
J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, H. Jónsson, J. Phys. Chem. B 2004, 108, 17886.
|
[46] |
A. A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, J. K. Nørskov, Energy Environ. Sci. 2010, 3, 1311.
|
[47] |
Y. Shao, X. Shi, H. Pan, Chem. Mater. 2017, 29, 8892.
|
[48] |
Z. Cheng, X. Zhang, H. Zhang, H. Liu, X. Yu, X. Dai, G. Liu, G. Chen, Phys. Chem. Chem. Phys. 2020, 22, 18480.
|
[49] |
X. Liu, S. Lin, J. Gao, H. Shi, S.-G. Kim, Z. Chen, H. Lee, Phys. Chem. Chem. Phys. 2021, 23, 4030.
|
[50] |
J. Wu, J. Wen, Y.-X. Yu, Appl. Surf. Sci. 2021, 565, 150567.
|
[51] |
J. Guan, Z. Zhu, D. Tománek, Phys. Rev. Lett. 2014, 113, 046804.
|
[52] |
Y. Zhao, Q. Liu, J. Xing, X. Jiang, J. Zhao, Nanoscale Adv. 2022, 4, 600.
|
[53] |
J. Wang, S. Yip, S. R. Phillpot, D. Wolf, Phys. Rev. Lett. 1993, 71, 4182.
|
[54] |
X. Lv, W. Wei, P. Zhao, D. Er, B. Huang, Y. Dai, T. Jacob, J. Catal. 2019, 378, 97.
|
[55] |
X. Huang, J. Wang, H. Bing Tao, H. Tian, Z. Zhang, H. Xu, J. Catal. 2020, 389, 461.
|
[56] |
J. Zhang, J. Wu, H. Guo, W. Chen, J. Yuan, U. Martinez, G. Gupta, A. Mohite, P. M. Ajayan, J. Lou, Adv. Mater. 2017, 29, 1701955.
|
[57] |
Y. Li, H. Su, S. H. Chan, Q. Sun, ACS Catal. 2015, 5, 6658.
|
[58] |
J. Mukherjee, S. Paul, A. Adalder, S. Kapse, R. Thapa, S. Mandal, B. Ghorai, S. Sarkar, U. K. Ghorai, Adv. Funct. Mater. 2022, 32, 2200882.
|
[59] |
K. Mathew, R. Sundararaman, K. Letchworth-Weaver, T. A. Arias, R. G. Hennig, J. Chem. Phys. 2014, 140, 084106.
|
[60] |
J. Long, C. Guo, X. Fu, H. Jing, G. Qin, H. Li, J. Xiao, J. Phys. Chem. Lett. 2021, 12, 6988.
|
[61] |
X. Huang, L.-Y. Gan, J. Wang, S. Ali, C.-C. He, H. Xu, J. Phys. Chem. Lett. 2021, 12, 9197.
|
[62] |
Y. Xiao, C. Shen, Z. Xiong, J. Li, W. Zhang, Mater. Today Phys. 2022, 26, 100726.
|
[63] |
J. Zhao, Z. Chen, J. Am. Chem. Soc. 2017, 139, 12480.
|
[64] |
C. Wang, Y.-T. Shan, W.-H. Zheng, M. Zhang, Z.-M. Su, Appl. Surf. Sci. 2022, 580, 152359.
|
[65] |
L. Zhang, X. Ji, X. Ren, Y. Ma, X. Shi, Z. Tian, A. M. Asiri, L. Chen, B. Tang, X. Sun, Adv. Mater. 2018, 30, 1800191.
|
[66] |
Y. Ma, T. Yang, H. Zou, W. Zang, Z. Kou, L. Mao, Y. Feng, L. Shen, S. J. Pennycook, L. Duan, X. Li, J. Wang, Adv. Mater. 2020, 32, 2002177.
|
[67] |
V. Yandulov Dmitry, R. Schrock Richard, Science 2003, 301, 76.
|
[68] |
S. Lv, C. Huang, G. Li, L. Yang, Energy Environ. Mater. 2022, 5, 533.
|
[69] |
H. Cheng, L.-X. Ding, G.-F. Chen, L. Zhang, J. Xue, H. Wang, Adv. Mater. 2018, 30, 1803694.
|
[70] |
L. Han, X. Liu, J. Chen, R. Lin, H. Liu, F. Lü, S. Bak, Z. Liang, S. Zhao, E. Stavitski, J. Luo, R. R. Adzic, H. L. Xin, Angew. Chem. Int. Ed. 2019, 58, 2321.
|
[71] |
C. Ling, X. Bai, Y. Ouyang, A. Du, J. Wang, J. Phys. Chem. C 2018, 122, 16842.
|
[72] |
K. Chu, Y.-P. Liu, Y.-B. Li, Y.-L. Guo, Y. Tian, H. Zhang, Appl. Catal. B Environ. 2020, 264, 118525.
|
[73] |
Z. W. Chen, X. Y. Lang, Q. Jiang, J. Mater. Chem. A 2018, 6, 9623.
|
[74] |
A. J. Medford, A. Vojvodic, J. S. Hummelshøj, J. Voss, F. Abild-Pedersen, F. Studt, T. Bligaard, A. Nilsson, J. K. Nørskov, J. Catal. 2015, 328, 36.
|
[75] |
X. Guo, S. Lin, J. Gu, S. Zhang, Z. Chen, S. Huang, Adv. Funct. Mater. 2021, 31, 2008056.
|
[76] |
T. Li, H. Jin, Z. Liang, L. Huang, Y. Lu, H. Yu, Z. Hu, J. Wu, B. Y. Xia, G. Feng, J. Zhou, Nanoscale 2018, 10, 6844.
|
[77] |
X. Xiao, H. Song, S. Lin, Y. Zhou, X. Zhan, Z. Hu, Q. Zhang, J. Sun, B. Yang, T. Li, L. Jiao, J. Zhou, J. Tang, Y. Gogotsi, Nat. Commun. 2016, 7, 11296.
|
/
〈 | 〉 |