Excess Activity Tuned by Distorted Tetrahedron in CoMoO4 for Oxygen Evolution
Hengbo Xiao, Kai Chi, Hongxia Yin, Xiangji Zhou, Pengxiang Lei, Peizhi Liu, Jiakun Fang, Xiuhong Li, Songliu Yuan, Zhen Zhang, Yaqiong Su, Junjie Guo, Lihua Qian
Excess Activity Tuned by Distorted Tetrahedron in CoMoO4 for Oxygen Evolution
Oxygen vacancies enable modulating surface reconstruction of transition metal oxides containing metal-oxygen polyhedrons into metallic oxyhydroxide for oxygen evolution reaction (OER), while revealing reconstructing mechanism is stuck by the requirement to precisely control exact sites of these vacancies. Herein, oxygen vacancies are localized only within MoO4 tetrahedrons rather than CoO6 octahedrons in CoMoO4 catalyst, guaranteeing coherent reconstruction of CoO6 octahedrons into pure CoOOH with tunable activities for OER. Meanwhile, distorted tetrahedron accelerates the dissolution of Mo atoms into alkaline electrolyte, triggering spontaneous transition of partial CoMoO4 into Co(OH)2. CoO6 octahedrons in both CoMoO4 and Co(OH)2 can transform pure CoOOH completely at lower potential, resulting in excess intrinsic activity whose summit is identified by overpotential at 10 mA cm-2 with 22.9% reduction and Tafel slope with 65.3% reduction. Well-defined manipulation over the distorted polyhedrons offers one versatile knob to precisely modulate electronic structure of oxide catalysts with outstanding OER performance.
metal-oxygen polyhedron / oxygen evolution reaction / oxygen vacancy / Raman spectroscopy
[1] |
S. Anantharaj, V. Aravindan, Adv. Energy Mater. 2020, 10, 1902666.
|
[2] |
F. Cao, X. Yang, C. Shen, X. Li, J. Wang, G. Qin, S. Li, X. Pang, G. Li, J. Mater. Chem. A 2020, 8, 7245.
|
[3] |
Z. Jin, P. Li, Y. Meng, Z. Fang, D. Xiao, G. Yu, Nat. Catal. 2021, 4, 615.
|
[4] |
P. P. Lopes, D. Y. Chung, X. Rui, H. Zheng, H. He, P. Farinazzo Bergamo Dias Martins, D. Strmcnik, V. R. Stamenkovic, P. Zapol, J. F. Mitchell, J. Am. Chem. Soc. 2021, 143, 2741.
|
[5] |
S. Sun, H. Li, Z. J. Xu, Joule 2018, 2, 1024.
|
[6] |
H. Wang, H. Lee, Y. Deng, Z. Lu, P. Hsu, Y. Liu, D. Lin, Y. Cui, Nat. Commun. 2015,
CrossRef
Google scholar
|
[7] |
C. Hu, Y. Hu, C. Fan, L. Yang, Y. Zhang, H. Li, W. Xie, Angew. Chem. Int. Ed. 2021, 60, 19774.
|
[8] |
C. Zhang, J. Xiao, X. Lv, L. Qian, S. Yuan, S. Wang, P. Lei, J. Mater. Chem. A 2016, 4, 16516.
|
[9] |
J. Sun, H. Xue, N. Guo, T. Song, Y. R. Hao, J. Sun, J. Zhang, Q. Wang, Angew. Chem. Int. Ed. 2021, 60, 19435.
|
[10] |
D. A. Kuznetsov, M. A. Naeem, P. V. Kumar, P. M. Abdala, A. Fedorov, C. R. Müller, J. Am. Chem. Soc. 2020, 142, 7883.
|
[11] |
J. Xi, Q. Wang, X. Duan, N. Zhang, J. Yu, H. Sun, S. Wang, Chem. Eng. Sci. 2021, 231, 116303.
|
[12] |
Y. Zhao, C. Chang, F. Teng, Y. Zhao, G. Chen, R. Shi, G. I. Waterhouse, W. Huang, T. Zhang, Adv. Energy Mater. 2017, 7, 1700005.
|
[13] |
Z. Xiao, Y. Huang, C. Dong, C. Xie, Z. Liu, S. Du, W. Chen, D. Yan, L. Tao, Z. Shu, J. Am. Chem. Soc. 2020, 142, 12087.
|
[14] |
J. R. Petrie, V. R. Cooper, J. W. Freeland, T. L. Meyer, Z. Zhang, D. A. Lutterman, H. N. Lee, J. Am. Chem. Soc. 2016, 138, 2488.
|
[15] |
T. Ling, D. Yan, H. Wang, Y. Jiao, Z. Hu, Y. Zheng, L. Zheng, J. Mao, H. Liu, X. Du, Nat. Commun. 2017, 8 (1), 1.
|
[16] |
L. Peng, C. Wang, Q. Wang, R. Shi, T. Zhang, G. I. Waterhouse, Adv. Energy Sustain. Res. 2021, 2, 2100078.
|
[17] |
X. Luo, P. Ji, P. Wang, R. Cheng, D. Chen, C. Lin, J. Zhang, J. He, Z. Shi, N. Li, Adv. Energy Mater. 2020, 10, 1903891.
|
[18] |
W. Li, L. Zhao, C. Wang, X. Lu, W. Chen, ACS Appl. Mater. Inter. 2021, 13, 46998.
|
[19] |
K. Ham, S. Hong, S. Kang, K. Cho, J. Lee, ACS Energy Lett. 2021, 6, 364.
|
[20] |
X. Miao, L. Wu, Y. Lin, X. Yuan, J. Zhao, W. Yan, S. Zhou, L. Shi, Chem. Commun. 2019, 55, 1442.
|
[21] |
K. Zhu, F. Shi, X. Zhu, W. Yang, Nano Energy 2020, 73, 104761.
|
[22] |
L. Trotochaud, S. L. Young, J. K. Ranney, S. W. Boettcher, J. Am. Chem. Soc. 2014, 136, 6744.
|
[23] |
Y. Dou, C. He, L. Zhang, M. Al-Mamun, H. Guo, W. Zhang, Q. Xia, J. Xu, L. Jiang, Y. Wang, Cell Rep. Phys. Sci. 2020, 1, 100077.
|
[24] |
J. Chen, F. Zheng, S. Zhang, A. Fisher, Y. Zhou, Z. Wang, Y. Li, B. Xu, J. Li, S. Sun, ACS Catal. 2018, 8, 11342.
|
[25] |
H. Lee, O. Gwon, K. Choi, L. Zhang, J. Zhou, J. Park, J. Yoo, J. Wang, J. H. Lee, G. Kim, ACS Catal. 2020, 10, 4664.
|
[26] |
C. Hu, X. Wang, T. Yao, T. Gao, J. Han, X. Zhang, Y. Zhang, P. Xu, B. Song, Adv. Funct. Mater. 2019, 29, 1902449.
|
[27] |
N. C. S. Selvam, L. Du, B. Y. Xia, P. J. Yoo, B. You, Adv. Funct. Mater. 2021, 31, 2008190.
|
[28] |
J. Hwang, R. R. Rao, L. Giordano, Y. Katayama, Y. Yu, Y. Shao-Horn, Science 2017, 358, 751.
|
[29] |
C. Li, X. Han, F. Cheng, Y. Hu, C. Chen, J. Chen, Nat. Commun. 2015, 6, 7345.
|
[30] |
K. Zhu, X. Zhu, W. Yang, Angew. Chem. Int. Ed. 2019, 58, 1252.
|
[31] |
K. Chi, X. Tian, Q. Wang, Z. Zhang, X. Zhang, Y. Zhang, F. Jing, Q. Lv, W. Yao, F. Xiao, J. Catal. 2020, 381, 44.
|
[32] |
S. Li, N. Yang, L. Liao, Y. Luo, S. Wang, F. Cao, W. Zhou, D. Huang, H. Chen, ACS Appl. Mater. Inter. 2018, 10, 37038.
|
[33] |
Z. Zhang, Y. Liu, Z. Huang, L. Ren, X. Qi, X. Wei, J. Zhong, Phys. Chem. Chem. Phys. 2015, 17, 20795.
|
[34] |
Y. Xu, L. Xie, D. Li, R. Yang, D. Jiang, M. Chen, ACS Sustain. Chem. Eng. 2018, 6, 16086.
|
[35] |
C. Qing, C. Yang, M. Chen, W. Li, S. Wang, Y. Tang, Chem. Eng. J. 2018, 354, 182.
|
[36] |
K. Liu, W. Zhang, F. Lei, L. Liang, B. Gu, Y. Sun, B. Ye, W. Ni, Y. Xie, Nano Energy 2016, 30, 810.
|
[37] |
H. Zeng, X. Zhong, N. Alonso-Vante, F. Du, Y. Xie, Y. Huang, J. Ma, Appl. Catal. B Environ. 2021, 281, 119535.
|
[38] |
Y. Zeng, Z. Lai, Y. Han, H. Zhang, S. Xie, X. Lu, Adv. Mater. 2018, 30, 1802396.
|
[39] |
Y. C. Wang, J. M. Wu, Adv. Funct. Mater. 2020, 30, 1907619.
|
[40] |
L. Yang, N. Huang, C. Luo, H. Yu, P. Sun, X. Lv, X. Sun, Chem. Eng. J. 2021, 404, 127112.
|
[41] |
T. Meng, H. Jia, H. Ye, T. Zeng, X. Yang, H. Wang, Y. Zhang, J. Colloid, Interf. Sci. 2020,
CrossRef
Google scholar
|
[42] |
X. Liu, J. Meng, K. Ni, R. Guo, F. Xia, J. Xie, X. Li, B. Wen, P. Wu, M. Li, Cell Rep. Phys. Sci. 2020, 1, 100241.
|
[43] |
Q. Qian, Y. Li, Y. Liu, L. Yu, G. Zhang, Adv. Mater. 2019, 31, 1901139.
|
[44] |
X. Yu, R. B. Araujo, Z. Qiu, E. Campos Dos Santos, A. Anil, A. Cornell, L. G. Pettersson, M. Johnsson, Adv. Energy Mater. 2022, 12, 2103750.
|
[45] |
Y. Zhang, H. Guo, P. Yuan, K. Pang, B. Cao, X. Wu, L. Zheng, R. Song, J. Power Sources 2019, 442, 227252.
|
[46] |
H. B. Tao, L. Fang, J. Chen, H. B. Yang, J. Gao, J. Miao, S. Chen, B. Liu, J. Am. Chem. Soc. 2016, 138, 9978.
|
[47] |
M. A. Sayeed, T. Herd, A. P. O’Mullane, J. Mater. Chem. A 2016, 4, 991.
|
/
〈 | 〉 |