Porously Reduced 2-Dimensional Bi2O2CO3 Petals for Strain-Mediated Electrochemical CO2 Reduction to HCOOH
Won Seok Cho, Dae Myung Hong, Wan Jae Dong, Tae Hyung Lee, Chul Jong Yoo, Donghwa Lee, Ho Won Jang, Jong-Lam Lee
Porously Reduced 2-Dimensional Bi2O2CO3 Petals for Strain-Mediated Electrochemical CO2 Reduction to HCOOH
Here we introduce bismuth-based catalysts for the efficient electrochemical reduction of CO2 to formic acid (HCOOH), which are composed of petal-shaped Bi2O2CO3 (BOC) that spontaneously formed from Bi thin film in aqueous carbonate solution at room temperature. During the electrochemical reduction process, the BOC petals transform to reduced BOC (R-BOC) consisting of individual BOC and Bi domains. Lattice mismatch between both domains induces biaxial strain at the interfaces. Density functional theory calculations suggest that the tensile strain on the Bi domain stabilizes the *OCHO intermediate, reducing the thermodynamic barrier toward CO2 conversion to HCOOH. Together with the thermodynamic benefit and the unique nanoporous petal-shaped morphology, R-BOC petals have a superior Faradaic efficiency of 95.9% at -0.8 VRHE for the electrochemical conversion of CO2 to HCOOH. This work demonstrates that the spontaneously formed binary phases with desirable lattice strain can increase the activity of bismuth catalysts to the CO2 reduction reaction; such a strategy can be applicable in design of various electrocatalysts.
bismuth / carbon dioxide reduction / formic acid / heterointerfaces / strain
[1] |
Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov, T. F. Jaramillo, Science 2017,
CrossRef
Google scholar
|
[2] |
R. Francke, B. Schille, M. Roemelt, Chem. Rev. 2018, 118, 4631.
|
[3] |
P. De Luna, R. Quintero-Bermudez, C.-T. Dinh, M. B. Ross, O. S. Bushuyev, P. Todorović, T. Regier, S. O. Kelley, P. Yang, E. H. Sargent, Nat. Catal. 2018, 1, 103.
|
[4] |
H. Liu, Y. Zhu, J. Ma, Z. Zhang, W. Hu, Adv. Funct. Mater. 2020, 30, 1910534.
|
[5] |
J. R. Eppinger, K.-W. Huang, ACS Energy Lett. 2017, 2, 188.
|
[6] |
M. Todoroki, K. Hara, A. Kudo, T. Sakata, J. Electroanal. Chem. 1995, 394, 199.
|
[7] |
J. S. Yoo, R. Christensen, T. Vegge, J. K. Nørskov, F. Studt, ChemSusChem 2016, 9, 358.
|
[8] |
C. H. Lee, M. W. Kanan, ACS Catal. 2015, 5, 465.
|
[9] |
Y. Wang, J. Liu, Y. Wang, A. M. Al-Enizi, G. Zheng, Small 2017, 13, 1701809.
|
[10] |
W. J. Dong, C. J. Yoo, J.-L. Lee, ACS Appl. Mater. Interfaces 2017, 9, 43575.
|
[11] |
S. Zhang, P. Kang, T. J. Meyer, J. Am. Chem. Soc. 2014, 136, 1734.
|
[12] |
W. J. Dong, D. M. Hong, J. Y. Park, S. Kim, C. J. Yoo, J.-L. Lee, J. Electrochem. Soc. 2021, 168, 016514.
|
[13] |
S. Kim, W. J. Dong, S. Gim, W. Sohn, J. Y. Park, C. J. Yoo, H. W. Jang, J.- L. Lee, Nano Energy 2017, 39, 44.
|
[14] |
J. Y. Park, S. Kim, D. M. Hong, J. W. Lim, C. J. Yoo, W. J. Dong, J.-L. Lee, Electron. Mater. Lett. 2019, 15, 454.
|
[15] |
H. Yang, N. Han, J. Deng, J. Wu, Y. Wang, Y. Hu, P. Ding, Y. Li, Y. Li, J. Lu, Adv. Energy Mater. 2018, 8, 1801536.
|
[16] |
N. Han, Y. Wang, H. Yang, J. Deng, J. Wu, Y. Li, Y. Li, Nat. Commun. 2018,
CrossRef
Google scholar
|
[17] |
M. F. Baruch, J. E. Pander III, J. L. White, A. B. Bocarsly, ACS Catal. 2015, 5, 3148.
|
[18] |
J. Li, J. Li, X. Liu, J. Chen, P. Tian, S. Dai, M. Zhu, Y.-F. Han, Appl. Catal. B 2021, 298, 120581.
|
[19] |
J. E. Pander III, M. F. Baruch, A. B. Bocarsly, ACS Catal. 2016, 6, 7824.
|
[20] |
Y. Chen, M. W. Kanan, J. Am. Chem. Soc. 2012, 134, 1986.
|
[21] |
Z. M. Detweiler, J. L. White, S. L. Bernasek, A. B. Bocarsly, Langmuir 2014, 30, 7593.
|
[22] |
J. Albo, M. Perfecto-Irigaray, G. Beobide, A. Irabien, J. CO2 Util. 2019, 33, 157.
|
[23] |
H. Rabiee, L. Ge, X. Zhang, S. Hu, M. Li, S. Smart, Z. Zhu, Z. Yuan, Appl. Catal. B 2021, 286, 119945.
|
[24] |
Y. X. Duan, Y. T. Zhou, Z. Yu, D. X. Liu, Z. Wen, J. M. Yan, Q. Jiang, Angew. Chem. Int. Ed. 2021, 60, 8798.
|
[25] |
F. Li, G. H. Gu, C. Choi, P. Kolla, S. Hong, T.-S. Wu, Y.-L. Soo, J. Masa, S. Mukerjee, Y. Jung, Appl. Catal. B 2020, 277, 119241.
|
[26] |
D. Wu, G. Huo, W. Chen, X.-Z. Fu, J.-L. Luo, Appl. Catal. B 2020, 271, 118957.
|
[27] |
P. F. Sui, C. Xu, M. N. Zhu, S. Liu, Q. Liu, J. L. Luo, Small 2021, 18, 2105682.
|
[28] |
Y. Wang, P. Han, X. Lv, L. Zhang, G. Zheng, Joule 2018, 2, 2551.
|
[29] |
Q. Shao, P. Wang, X. Huang, Adv. Funct. Mater. 2019, 29, 1806419.
|
[30] |
Y. Yang, M. Luo, W. Zhang, Y. Sun, X. Chen, S. Guo, Chem 2018, 4, 2054.
|
[31] |
C. H. Kuo, L. K. Lamontagne, C. N. Brodsky, L. Y. Chou, J. Zhuang, B. T. Sneed, M. K. Sheehan, C. K. Tsung, ChemSusChem 2013, 6, 1993.
|
[32] |
C.-J. Chang, S.-C. Lin, H.-C. Chen, J. Wang, K. J. Zheng, Y. Zhu, H. M. Chen, J. Am. Chem. Soc. 2020, 142, 12119.
|
[33] |
R. P. Jansonius, L. M. Reid, C. N. Virca, C. P. Berlinguette, ACS Energy Lett. 2019, 4, 980.
|
[34] |
Y. Xing, X. Kong, X. Guo, Y. Liu, Q. Li, Y. Zhang, Y. Sheng, X. Yang, Z. Geng, J. Zeng, Adv. Sci. 2020, 7, 1902989.
|
[35] |
S. Yan, C. Peng, C. Yang, Y. Chen, J. Zhang, A. Guan, X. Lv, H. Wang, Z. Wang, T. K. Sham, Angew. Chem. 2021, 133, 25945.
|
[36] |
H. Chen, L. Wu, C. Ren, Q. Luo, Z. Xie, X. Jiang, S. Zhu, Y. Xia, Y. Luo, J. Power Sources 2001, 95, 108.
|
[37] |
Y. Lum, J. W. Ager, Angew. Chem. Int. Ed. 2018, 57, 551.
|
[38] |
A. Eilert, F. Cavalca, F. S. Roberts, J. R. Osterwalder, C. Liu, M. Favaro, E. J. Crumlin, H. Ogasawara, D. Friebel, L. G. Pettersson, J. Phys. Chem. Lett. 2017, 8, 285.
|
[39] |
F. Cavalca, R. Ferragut, S. Aghion, A. Eilert, O. Diaz-Morales, C. Liu, A. L. Koh, T. W. Hansen, L. G. Pettersson, A. Nilsson, J. Phys. Chem. C 2017, 121, 25003.
|
[40] |
X. An, S. Li, X. Hao, X. Du, T. Yu, Z. Wang, X. Hao, A. Abudula, G. Guan, Sustain. Energy Fuels 2020, 4, 2831.
|
[41] |
K. Fan, Y. Jia, Y. Ji, P. Kuang, B. Zhu, X. Liu, J. Yu, ACS Catal. 2019, 10, 358.
|
[42] |
L. Chen, R. Huang, S.-F. Yin, S.-L. Luo, C.-T. Au, Chem. Eng. J. 2012, 193, 123.
|
[43] |
R. Hu, X. Xiao, S. Tu, X. Zuo, J. Nan, Appl. Catal. B 2015, 163, 510.
|
[44] |
C. J. Yoo, W. J. Dong, J. Y. Park, J. W. Lim, S. Kim, K. S. Choi, F. O. Odongo Ngome, S.-Y. Choi, J.-L. Lee, ACS Appl. Energy Mater. 2020, 3, 4466.
|
[45] |
F. Zhou, H. Li, M. Fournier, D. R. MacFarlane, ChemSusChem 2017, 10, 1509.
|
[46] |
C. W. Lee, N. H. Cho, K. T. Nam, Y. J. Hwang, B. K. Min, Nat. Commun. 2019,
CrossRef
Google scholar
|
[47] |
G. Wang, J. Chen, Y. Ding, P. Cai, L. Yi, Y. Li, C. Tu, Y. Hou, Z. Wen, L. Dai, Chem. Soc. Rev. 2021, 50, 4993.
|
[48] |
L. Ma, W. Hu, Q. Pan, L. Zou, Z. Zou, K. Wen, H. Yang, J. CO2 Util. 2019, 34, 108.
|
[49] |
Z. Cao, D. Kim, D. Hong, Y. Yu, J. Xu, S. Lin, X. Wen, E. M. Nichols, K. Jeong, J. A. Reimer, J. Am. Chem. Soc. 2016, 138, 8120.
|
[50] |
L. Zhang, Z. Wei, S. Thanneeru, M. Meng, M. Kruzyk, G. Ung, B. Liu, J. He, Angew. Chem. 2019, 131, 15981.
|
[51] |
Y. T. Guntern, J. R. Pankhurst, J. Vávra, M. Mensi, V. Mantella, P. Schouwink, R. Buonsanti, Angew. Chem. 2019, 131, 12762.
|
[52] |
F. Yang, A. O. Elnabawy, R. Schimmenti, P. Song, J. Wang, Z. Peng, S. Yao, R. Deng, S. Song, Y. Lin, Nat. Commun. 2020,
CrossRef
Google scholar
|
[53] |
Y. Zhang, D. Li, Y. Zhang, X. Zhou, S. Guo, L. Yang, J. Mater. Chem. A 2014, 2, 8273.
|
[54] |
G. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15.
|
[55] |
G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.
|
[56] |
J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
|
[57] |
F. Han, Probl. Solid State Phys. Solut. 2011, 50, 391.
|
[58] |
G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.
|
[59] |
F. Wang, Z. Zhao, K. Zhang, F. Dong, Y. Zhou, CrystEngComm 2015, 17, 6098.
|
/
〈 | 〉 |