Porously Reduced 2-Dimensional Bi2O2CO3 Petals for Strain-Mediated Electrochemical CO2 Reduction to HCOOH

Won Seok Cho, Dae Myung Hong, Wan Jae Dong, Tae Hyung Lee, Chul Jong Yoo, Donghwa Lee, Ho Won Jang, Jong-Lam Lee

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (1) : 12490. DOI: 10.1002/eem2.12490
RESEARCH ARTICLE

Porously Reduced 2-Dimensional Bi2O2CO3 Petals for Strain-Mediated Electrochemical CO2 Reduction to HCOOH

Author information +
History +

Abstract

Here we introduce bismuth-based catalysts for the efficient electrochemical reduction of CO2 to formic acid (HCOOH), which are composed of petal-shaped Bi2O2CO3 (BOC) that spontaneously formed from Bi thin film in aqueous carbonate solution at room temperature. During the electrochemical reduction process, the BOC petals transform to reduced BOC (R-BOC) consisting of individual BOC and Bi domains. Lattice mismatch between both domains induces biaxial strain at the interfaces. Density functional theory calculations suggest that the tensile strain on the Bi domain stabilizes the *OCHO intermediate, reducing the thermodynamic barrier toward CO2 conversion to HCOOH. Together with the thermodynamic benefit and the unique nanoporous petal-shaped morphology, R-BOC petals have a superior Faradaic efficiency of 95.9% at -0.8 VRHE for the electrochemical conversion of CO2 to HCOOH. This work demonstrates that the spontaneously formed binary phases with desirable lattice strain can increase the activity of bismuth catalysts to the CO2 reduction reaction; such a strategy can be applicable in design of various electrocatalysts.

Keywords

bismuth / carbon dioxide reduction / formic acid / heterointerfaces / strain

Cite this article

Download citation ▾
Won Seok Cho, Dae Myung Hong, Wan Jae Dong, Tae Hyung Lee, Chul Jong Yoo, Donghwa Lee, Ho Won Jang, Jong-Lam Lee. Porously Reduced 2-Dimensional Bi2O2CO3 Petals for Strain-Mediated Electrochemical CO2 Reduction to HCOOH. Energy & Environmental Materials, 2024, 7(1): 12490 https://doi.org/10.1002/eem2.12490

References

[1]
Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov, T. F. Jaramillo, Science 2017,
CrossRef Google scholar
[2]
R. Francke, B. Schille, M. Roemelt, Chem. Rev. 2018, 118, 4631.
[3]
P. De Luna, R. Quintero-Bermudez, C.-T. Dinh, M. B. Ross, O. S. Bushuyev, P. Todorović, T. Regier, S. O. Kelley, P. Yang, E. H. Sargent, Nat. Catal. 2018, 1, 103.
[4]
H. Liu, Y. Zhu, J. Ma, Z. Zhang, W. Hu, Adv. Funct. Mater. 2020, 30, 1910534.
[5]
J. R. Eppinger, K.-W. Huang, ACS Energy Lett. 2017, 2, 188.
[6]
M. Todoroki, K. Hara, A. Kudo, T. Sakata, J. Electroanal. Chem. 1995, 394, 199.
[7]
J. S. Yoo, R. Christensen, T. Vegge, J. K. Nørskov, F. Studt, ChemSusChem 2016, 9, 358.
[8]
C. H. Lee, M. W. Kanan, ACS Catal. 2015, 5, 465.
[9]
Y. Wang, J. Liu, Y. Wang, A. M. Al-Enizi, G. Zheng, Small 2017, 13, 1701809.
[10]
W. J. Dong, C. J. Yoo, J.-L. Lee, ACS Appl. Mater. Interfaces 2017, 9, 43575.
[11]
S. Zhang, P. Kang, T. J. Meyer, J. Am. Chem. Soc. 2014, 136, 1734.
[12]
W. J. Dong, D. M. Hong, J. Y. Park, S. Kim, C. J. Yoo, J.-L. Lee, J. Electrochem. Soc. 2021, 168, 016514.
[13]
S. Kim, W. J. Dong, S. Gim, W. Sohn, J. Y. Park, C. J. Yoo, H. W. Jang, J.- L. Lee, Nano Energy 2017, 39, 44.
[14]
J. Y. Park, S. Kim, D. M. Hong, J. W. Lim, C. J. Yoo, W. J. Dong, J.-L. Lee, Electron. Mater. Lett. 2019, 15, 454.
[15]
H. Yang, N. Han, J. Deng, J. Wu, Y. Wang, Y. Hu, P. Ding, Y. Li, Y. Li, J. Lu, Adv. Energy Mater. 2018, 8, 1801536.
[16]
N. Han, Y. Wang, H. Yang, J. Deng, J. Wu, Y. Li, Y. Li, Nat. Commun. 2018,
CrossRef Google scholar
[17]
M. F. Baruch, J. E. Pander III, J. L. White, A. B. Bocarsly, ACS Catal. 2015, 5, 3148.
[18]
J. Li, J. Li, X. Liu, J. Chen, P. Tian, S. Dai, M. Zhu, Y.-F. Han, Appl. Catal. B 2021, 298, 120581.
[19]
J. E. Pander III, M. F. Baruch, A. B. Bocarsly, ACS Catal. 2016, 6, 7824.
[20]
Y. Chen, M. W. Kanan, J. Am. Chem. Soc. 2012, 134, 1986.
[21]
Z. M. Detweiler, J. L. White, S. L. Bernasek, A. B. Bocarsly, Langmuir 2014, 30, 7593.
[22]
J. Albo, M. Perfecto-Irigaray, G. Beobide, A. Irabien, J. CO2 Util. 2019, 33, 157.
[23]
H. Rabiee, L. Ge, X. Zhang, S. Hu, M. Li, S. Smart, Z. Zhu, Z. Yuan, Appl. Catal. B 2021, 286, 119945.
[24]
Y. X. Duan, Y. T. Zhou, Z. Yu, D. X. Liu, Z. Wen, J. M. Yan, Q. Jiang, Angew. Chem. Int. Ed. 2021, 60, 8798.
[25]
F. Li, G. H. Gu, C. Choi, P. Kolla, S. Hong, T.-S. Wu, Y.-L. Soo, J. Masa, S. Mukerjee, Y. Jung, Appl. Catal. B 2020, 277, 119241.
[26]
D. Wu, G. Huo, W. Chen, X.-Z. Fu, J.-L. Luo, Appl. Catal. B 2020, 271, 118957.
[27]
P. F. Sui, C. Xu, M. N. Zhu, S. Liu, Q. Liu, J. L. Luo, Small 2021, 18, 2105682.
[28]
Y. Wang, P. Han, X. Lv, L. Zhang, G. Zheng, Joule 2018, 2, 2551.
[29]
Q. Shao, P. Wang, X. Huang, Adv. Funct. Mater. 2019, 29, 1806419.
[30]
Y. Yang, M. Luo, W. Zhang, Y. Sun, X. Chen, S. Guo, Chem 2018, 4, 2054.
[31]
C. H. Kuo, L. K. Lamontagne, C. N. Brodsky, L. Y. Chou, J. Zhuang, B. T. Sneed, M. K. Sheehan, C. K. Tsung, ChemSusChem 2013, 6, 1993.
[32]
C.-J. Chang, S.-C. Lin, H.-C. Chen, J. Wang, K. J. Zheng, Y. Zhu, H. M. Chen, J. Am. Chem. Soc. 2020, 142, 12119.
[33]
R. P. Jansonius, L. M. Reid, C. N. Virca, C. P. Berlinguette, ACS Energy Lett. 2019, 4, 980.
[34]
Y. Xing, X. Kong, X. Guo, Y. Liu, Q. Li, Y. Zhang, Y. Sheng, X. Yang, Z. Geng, J. Zeng, Adv. Sci. 2020, 7, 1902989.
[35]
S. Yan, C. Peng, C. Yang, Y. Chen, J. Zhang, A. Guan, X. Lv, H. Wang, Z. Wang, T. K. Sham, Angew. Chem. 2021, 133, 25945.
[36]
H. Chen, L. Wu, C. Ren, Q. Luo, Z. Xie, X. Jiang, S. Zhu, Y. Xia, Y. Luo, J. Power Sources 2001, 95, 108.
[37]
Y. Lum, J. W. Ager, Angew. Chem. Int. Ed. 2018, 57, 551.
[38]
A. Eilert, F. Cavalca, F. S. Roberts, J. R. Osterwalder, C. Liu, M. Favaro, E. J. Crumlin, H. Ogasawara, D. Friebel, L. G. Pettersson, J. Phys. Chem. Lett. 2017, 8, 285.
[39]
F. Cavalca, R. Ferragut, S. Aghion, A. Eilert, O. Diaz-Morales, C. Liu, A. L. Koh, T. W. Hansen, L. G. Pettersson, A. Nilsson, J. Phys. Chem. C 2017, 121, 25003.
[40]
X. An, S. Li, X. Hao, X. Du, T. Yu, Z. Wang, X. Hao, A. Abudula, G. Guan, Sustain. Energy Fuels 2020, 4, 2831.
[41]
K. Fan, Y. Jia, Y. Ji, P. Kuang, B. Zhu, X. Liu, J. Yu, ACS Catal. 2019, 10, 358.
[42]
L. Chen, R. Huang, S.-F. Yin, S.-L. Luo, C.-T. Au, Chem. Eng. J. 2012, 193, 123.
[43]
R. Hu, X. Xiao, S. Tu, X. Zuo, J. Nan, Appl. Catal. B 2015, 163, 510.
[44]
C. J. Yoo, W. J. Dong, J. Y. Park, J. W. Lim, S. Kim, K. S. Choi, F. O. Odongo Ngome, S.-Y. Choi, J.-L. Lee, ACS Appl. Energy Mater. 2020, 3, 4466.
[45]
F. Zhou, H. Li, M. Fournier, D. R. MacFarlane, ChemSusChem 2017, 10, 1509.
[46]
C. W. Lee, N. H. Cho, K. T. Nam, Y. J. Hwang, B. K. Min, Nat. Commun. 2019,
CrossRef Google scholar
[47]
G. Wang, J. Chen, Y. Ding, P. Cai, L. Yi, Y. Li, C. Tu, Y. Hou, Z. Wen, L. Dai, Chem. Soc. Rev. 2021, 50, 4993.
[48]
L. Ma, W. Hu, Q. Pan, L. Zou, Z. Zou, K. Wen, H. Yang, J. CO2 Util. 2019, 34, 108.
[49]
Z. Cao, D. Kim, D. Hong, Y. Yu, J. Xu, S. Lin, X. Wen, E. M. Nichols, K. Jeong, J. A. Reimer, J. Am. Chem. Soc. 2016, 138, 8120.
[50]
L. Zhang, Z. Wei, S. Thanneeru, M. Meng, M. Kruzyk, G. Ung, B. Liu, J. He, Angew. Chem. 2019, 131, 15981.
[51]
Y. T. Guntern, J. R. Pankhurst, J. Vávra, M. Mensi, V. Mantella, P. Schouwink, R. Buonsanti, Angew. Chem. 2019, 131, 12762.
[52]
F. Yang, A. O. Elnabawy, R. Schimmenti, P. Song, J. Wang, Z. Peng, S. Yao, R. Deng, S. Song, Y. Lin, Nat. Commun. 2020,
CrossRef Google scholar
[53]
Y. Zhang, D. Li, Y. Zhang, X. Zhou, S. Guo, L. Yang, J. Mater. Chem. A 2014, 2, 8273.
[54]
G. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15.
[55]
G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.
[56]
J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
[57]
F. Han, Probl. Solid State Phys. Solut. 2011, 50, 391.
[58]
G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.
[59]
F. Wang, Z. Zhao, K. Zhang, F. Dong, Y. Zhou, CrystEngComm 2015, 17, 6098.

RIGHTS & PERMISSIONS

2022 2022 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
PDF

Accesses

Citations

Detail

Sections
Recommended

/