Electrochemically Deposited CZTSSe Thin Films for Monolithic Perovskite Tandem Solar Cells with Efficiencies Over 17%

Sun Kyung Hwang, Ik Jae Park, Se Won Seo, Jae Hyun Park, So Jeong Park, Jin Young Kim

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (1) : 12489. DOI: 10.1002/eem2.12489
RESEARCH ARTICLE

Electrochemically Deposited CZTSSe Thin Films for Monolithic Perovskite Tandem Solar Cells with Efficiencies Over 17%

Author information +
History +

Abstract

In spite of the high potential economic feasibility of the tandem solar cells consisting of the halide perovskite and the kesterite Cu2ZnSn(S,Se)4 (CZTSSe), they have rarely been demonstrated due to the difficulty in implementing solution-processed perovskite top cell on the rough surface of the bottom cells. Here, we firstly demonstrate an efficient monolithic two-terminal perovskite/CZTSSe tandem solar cell by significantly reducing the surface roughness of the electrochemically deposited CZTSSe bottom cell. The surface roughness (Rrms) of the CZTSSe thin film could be reduced from 424 to 86 nm by using the potentiostatic mode rather than using the conventional galvanostatic mode, which can be further reduced to 22 nm after the subsequent ion-milling process. The perovskite top cell with a bandgap of 1.65 eV could be prepared using a solution process on the flattened CZTSSe bottom cell, resulting in the efficient perovskite/CZTSSe tandem solar cells. After the current matching between two subcells involving the thickness control of the perovskite layer, the best performing tandem device exhibited a high conversion efficiency of 17.5% without the hysteresis effect.

Keywords

CZTSSe / monolithic tandem solar cells / perovskite / solution process / surface roughness control

Cite this article

Download citation ▾
Sun Kyung Hwang, Ik Jae Park, Se Won Seo, Jae Hyun Park, So Jeong Park, Jin Young Kim. Electrochemically Deposited CZTSSe Thin Films for Monolithic Perovskite Tandem Solar Cells with Efficiencies Over 17%. Energy & Environmental Materials, 2024, 7(1): 12489 https://doi.org/10.1002/eem2.12489

References

[1]
D. H. Son, S. H. Kim, S. Y. Kim, Y. I. Kim, J. H. Sim, S. N. Park, D. H. Jeon, D. K. Hwang, S. J. Sung, J. K. Kang, K. J. Yang, D. H. Kim, J. Mater. Chem. A 2019, 7, 25279.
[2]
S. K. Hwang, J. H. Park, K. B. Cheon, S. W. Seo, J. E. Song, I. J. Park, S. G. Ji, M. A. Park, J. Y. Kim, Prog. Photovolt. Res. Appl. 2020, 28, 1345.
[3]
J. Zhou, X. Xu, B. Duan, H. Wu, J. Shi, Y. Luo, D. Li, Q. Meng, Nano Energy 2021, 89, 106405.
[4]
K. B. Cheon, S. K. Hwang, S. W. Seo, J. H. Park, M. A. Park, J. Y. Kim, ACS Appl. Mater. Interfaces 2019, 11, 24088.
[5]
S. W. Seo, J. O. Jeon, J. W. Seo, Y. Y. Yu, J. H. Jeong, D. K. Lee, H. Kim, M. J. Ko, H. J. Son, H. W. Jang, J. Y. Kim, ChemSusChem 2016, 9, 439.
[6]
J. E. Song, S. K. Hwang, J. H. Park, J. Y. Kim, ChemSusChem 2022, 15, e202102350.
[7]
M. He, C. Yan, J. Li, M. P. Suryawanshi, J. Kim, M. A. Green, X. Hao, Adv. Sci. (Weinh) 2021, 8, 2004313.
[8]
A. Polman, M. Knight, E. C. Garnett, B. Ehrler, W. C. Sinke, Science 2016, 352, aad4424.
[9]
M. A. Green, E. D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, X. Hao, Prog. Photovolt. Res. Appl. 2021, 29, 657.
[10]
B. R.-C. E. Chart, https://www.nrel.gov/pv/cell-efficiency.html (accessed: May 2022).
[11]
C. Yan, J. Huang, K. Sun, S. Johnston, Y. Zhang, H. Sun, A. Pu, M. He, F. Liu, K. Eder, Nat. Energy 2018, 3, 764.
[12]
M. G. Gang, V. C. Karade, M. P. Suryawanshi, H. Yoo, M. He, X. Hao, I. J. Lee, B. H. Lee, S. W. Shin, J. H. Kim, ACS Appl. Mater. Interfaces 2021, 13, 3959.
[13]
H. Guo, R. Meng, G. Wang, S. Wang, L. Wu, J. Li, Z. Wang, J. Dong, X. Hao, Y. Zhang, Energy Environ. Sci 2022, 15, 693.
[14]
J. Y. Kim, J. W. Lee, H. S. Jung, H. Shin, N. G. Park, Chem. Rev. 2020, 120, 7867.
[15]
H. J. Snaith, Nat. Mater. 2018, 17, 372.
[16]
T. Leijtens, K. A. Bush, R. Prasanna, M. D. McGehee, Nat. Energy 2018, 3, 828.
[17]
D. H. Kim, C. P. Muzzillo, J. Tong, A. F. Palmstrom, B. W. Larson, C. Choi, S. P. Harvey, S. Glynn, J. B. Whitaker, F. Zhang, Z. Li, H. Lu, M. F. A. M. van Hest, J. J. Berry, L. M. Mansfield, Y. Huang, Y. Yan, K. Zhu, Joule 2019, 3, 1734.
[18]
M. Anaya, G. Lozano, M. E. Calvo, H. M ıguez, Joule 2017, 1, 769.
[19]
M. Jeong, I. W. Choi, E. M. Go, Y. Cho, M. Kim, B. Lee, S. Jeong, Y. Jo, H. W. Choi, J. Lee, Science 2020, 369, 1615.
[20]
R. Wang, T. Huang, J. Xue, J. Tong, K. Zhu, Y. Yang, Nat. Photonics 2021, 15, 411.
[21]
I. J. Park, J. H. Park, S. G. Ji, M.-A. Park, J. H. Jang, J. Y. Kim, Joule 2019, 3, 807.
[22]
A. Al-Ashouri, E. K€ohnen, B. Li, A. Magomedov, H. Hempel, P. Caprioglio, J. A. M arquez, A. B. M. Vilches, E. Kasparavicius, J. A. Smith, Science 2020, 370, 1300.
[23]
D. Kim, H. J. Jung, I. J. Park, B. W. Larson, S. P. Dunfield, C. Xiao, J. Kim, J. Tong, P. Boonmongkolras, S. G. Ji, Science 2020, 368, 155.
[24]
Q. Han, Y.-T. Hsieh, L. Meng, J.-L. Wu, P. Sun, E.-P. Yao, S.-Y. Chang, S.- H. Bae, T. Kato, V. Bermudez, Science 2018, 361, 904.
[25]
H. Shen, T. Duong, J. Peng, D. Jacobs, N. Wu, J. Gong, Y. Wu, S. K. Karuturi, X. Fu, K. Weber, X. Xiao, T.P. White, K. Catchpole, Energy Environ. Sci. 2018, 11, 394.
[26]
T. Todorov, T. Gershon, O. Gunawan, C. Sturdevant, S. Guha, Appl. Phys. Lett. 2014, 105, 173902.
[27]
B. Ehrler, E. Alarcon-Llado, S. W. Tabernig, T. Veeken, E. C. Garnett, A. Polman, ACS Energy Lett. 2020, 5, 3029.
[28]
A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, Wiley, New York 2001.
[29]
M. Rai, L. H. Wong, L. Etgar, J. Phys. Chem. Lett. 2020, 11, 8189.

RIGHTS & PERMISSIONS

2022 2022 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
PDF

Accesses

Citations

Detail

Sections
Recommended

/