Low-Cost and Biodegradable Thermoelectric Devices Based on van der Waals Semiconductors on Paper Substrates
Gulsum Ersu, Carmen Munuera, Federico J. Mompean, Daniel Vaquero, Jorge Quereda, João Elias F. S. Rodrigues, Jose A. Alonso, Eduardo Flores, Jose R. Ares, Isabel J. Ferrer, Abdullah M. Al-Enizi, Ayman Nafady, Sruthi Kuriakose, Joshua O. Island, Andres Castellanos-Gomez
Low-Cost and Biodegradable Thermoelectric Devices Based on van der Waals Semiconductors on Paper Substrates
We present a method to fabricate handcrafted thermoelectric devices on standard office paper substrates. The devices are based on thin films of WS2, Te, and BP (P-type semiconductors) and TiS3 and TiS2 (N-type semiconductors), deposited by simply rubbing powder of these materials against paper. The thermoelectric properties of these semiconducting films revealed maximum Seebeck coefficients of (+1.32 ± 0.27) mV K-1 and (-0.82 ± 0.15) mV K-1 for WS2 and TiS3, respectively. Additionally, Peltier elements were fabricated by interconnecting the P- and N-type films with graphite electrodes. A thermopower value up to 6.11 mV K-1 was obtained when the Peltier element were constructed with three junctions. The findings of this work show proof-of-concept devices to illustrate the potential application of semiconducting van der Waals materials in future thermoelectric power generation as well as temperature sensing for low-cost disposable electronic devices.
paper-based electronics / Seebeck effect / semiconductors / thermoelectrics / van der Waals materials
[1] |
S. R. Forrest, Nature 2004, 428, 911.
|
[2] |
A. Nathan, A. Ahnood, M. T. Cole, Sungsik Lee, Y. Suzuki, P. Hiralal, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, A. Dyadyusha, S. Haque, P. Andrew, S. Hofmann, J. Moultrie, D. Chu, A. J. Flewitt, A. C. Ferrari, M. J. Kelly, J. Robertson, G. A. J. Amaratunga, W. I. Milne, Proc. IEEE 2012, 100, 1486.
|
[3] |
V. Selamneni, A. BS, P. Sahatiya, Med. DEVICES Sens. 2020, 3, e10099.
|
[4] |
A. Quddious, S. Yang, M. Khan, F. Tahir, A. Shamim, K. Salama, H. Cheema, Sensors 2016, 16, 2073.
|
[5] |
V. Forti, C. P. Baldé, R. Kuehr, G. Bel, Global E-waste Monitor 2020, 2020.
|
[6] |
S. Nandy, S. Goswami, A. Marques, D. Gaspar, P. Grey, I. Cunha, D. Nunes, A. Pimentel, R. Igreja, P. Barquinha, L. Pereira, E. Fortunato, R. Martins, Adv. Mater. Technol. 2021, 6, 2000994.
|
[7] |
A. Russo, B. Y. Ahn, J. J. Adams, E. B. Duoss, J. T. Bernhard, J. A. Lewis, Adv. Mater. 2011, 23, 3426.
|
[8] |
F. Eder, H. Klauk, M. Halik, U. Zschieschang, G. Schmid, C. Dehm, Appl. Phys. Lett. 2004, 84, 2673.
|
[9] |
D. Tobjörk, R. Österbacka, Adv. Mater. 2011, 23, 1935.
|
[10] |
Y. Xu, G. Zhao, L. Zhu, Q. Fei, Z. Zhang, Z. Chen, F. An, Y. Chen, Y. Ling, P. Guo, S. Ding, G. Huang, P. Y. Chen, Q. Cao, Z. Yan, Proc. Natl. Acad. Sci. USA 2020, 117, 18292.
|
[11] |
J. K. F. Lee, J. Paediatr. Child Health 2008, 44, 62.
|
[12] |
D. W. Eyre, A. E. Sheppard, H. Madder, I. Moir, R. Moroney, T. P. Quan, D. Griffiths, S. George, L. Butcher, M. Morgan, R. Newnham, M. Sunderland, T. Clarke, D. Foster, P. Hoffman, A. M. Borman, E. M. Johnson, G. Moore, C. S. Brown, A. S. Walker, T. E. A. Peto, D. W. Crook, K. J. M. Jeffery, N. Engl. J. Med. 2018, 379, 1322.
|
[13] |
J. J. Weems, Infect. Control Hosp. Epidemiol. 1993, 14, 583.
|
[14] |
T.-K. Kang, Appl. Phys. Lett. 2014, 104, 073117.
|
[15] |
T. Dinh, H. P. Phan, D. V. Dao, P. Woodfield, A. Qamar, N. T. Nguyen, J. Mater. Chem. C 2015, 3, 8776.
|
[16] |
D.-J. Lee, D. Y. Kim, IEEE Access 2019, 7, 77200.
|
[17] |
C.-W. Lin, Z. Zhao, J. Kim, J. Huang, Sci. Rep. 2014, 4, 3812.
|
[18] |
N. Kurra, D. Dutta, G. U. Kulkarni, Phys. Chem. Chem. Phys. 2013, 15, 8367.
|
[19] |
H. Liu, H. Jiang, D. Zhang, Z. Li, H. Zhou, F. Du, ACS Sustain Chem. Eng. 2017, 5, 10538.
|
[20] |
P. M. Pataniya, V. Patel, C. K. Sumesh, Nanotechnology 2021, 32, 315709.
|
[21] |
X. Liao, Z. Zhang, Q. Liao, Q. Liang, Y. Ou, M. Xu, M. Li, G. Zhang, Y. Zhang, Nanoscale 2016, 8, 13025.
|
[22] |
D. McManus, A. Dal Santo, P. B. Selvasundaram, R. Krupke, A. LiBassi, C. Casiraghi, Flex. Print. Electron. 2018, 3, 034005.
|
[23] |
B. Saha, S. Baek, J. Lee, ACS Appl. Mater. Interfaces 2017, 9, 4658.
|
[24] |
P. Pataniya, C. K. Zankat, M. Tannarana, C. K. Sumesh, S. Narayan, G. K. Solanki, K. D. Patel, V. M. Pathak, P. K. Jha, ACS Appl. Nano Mater. 2019, 2, 2758.
|
[25] |
K. A. Mirica, J. G. Weis, J. M. Schnorr, B. Esser, T. M. Swager, Angew. Chem. Int. Ed. 2012, 51, 10740.
|
[26] |
Y. Li, Y. A. Samad, T. Taha, G. Cai, S. Y. Fu, K. Liao, ACS Sustain. Chem. Eng. 2016, 4, 4288.
|
[27] |
H. Tai, Z. Duan, Y. Wang, S. Wang, Y. Jiang, ACS Appl. Mater. Interfaces 2020, 12, 31037.
|
[28] |
X. Zhang, Z. Lin, B. Chen, S. Sharma, C. P. Wong, W. Zhang, Y. Deng, J. Mater. Chem. A 2013, 1, 5835.
|
[29] |
M. P. Down, C. W. Foster, X. Ji, C. E. Banks, RSC Adv. 2016, 6, 81130.
|
[30] |
G. Zheng, L. Hu, H. Wu, X. Xie, Y. Cui, Energy Environ. Sci. 2011, 4, 3368.
|
[31] |
A. Fraiwan, S. Choi, Phys. Chem. Chem. Phys. 2014, 16, 26288.
|
[32] |
H. Lee, S. Choi, Nano Energy 2015, 15, 549.
|
[33] |
F. Brunetti, A. Operamolla, S. Castro-Hermosa, G. Lucarelli, V. Manca, G. M. Farinola, T. M. Brown, Adv. Funct. Mater. 2019, 29, 1806798.
|
[34] |
M. Rawat, E. Jayaraman, S. Balasubramanian, S. S. K. Iyer, Adv. Mater. Technol. 2019, 4, 1900184.
|
[35] |
F. J. DiSalvo, Science 1999, 285, 703.
|
[36] |
L. Habbe, J. Nurnus, Electron Cool. 2011, 17, 24.
|
[37] |
Y. Du, K. Cai, S. Chen, H. Wang, S. Z. Shen, R. Donelson, T. Lin, Sci. Rep. 2015, 5, 6411.
|
[38] |
V. V. Brus, M. Gluba, J. Rappich, F. Lang, P. D. Maryanchuk, N. H. Nickel, ACS Appl. Mater. Interfaces 2018, 10, 4737.
|
[39] |
R. Mulla, D. R. Jones, C. W. Dunnill, Adv. Mater. Technol. 2020, 5, 2000227.
|
[40] |
R. Mulla, D. R. Jones, C.W. Dunnill, Mater. Today Commun. 2021, 29, 102738.
|
[41] |
A. L. Hsu, P. K. Herring, N. M. Gabor, S. Ha, Y. C. Shin, Y. Song, M. Chin, M. Dubey, A. P. Chandrakasan, J. Kong, P. Jarillo-Herrero, T. Palacios, Nano Lett. 2015, 15, 7211.
|
[42] |
A. Mazaheri, M. Lee, H. S. J. van der Zant, R. Frisenda, A. Castellanos-Gomez, Nanoscale 2020, 12, 19068.
|
[43] |
M. Lee, A. Mazaheri, H. S. J. van der Zant, R. Frisenda, A. Castellanos-Gomez, Nanoscale 2020, 12, 22091.
|
[44] |
W. Zhang, Q. Zhao, C. Munuera, M. Lee, E. Flores, J. E. F. Rodrigues, J. R. Ares, C. Sanchez, J. Gainza, H. S. J. van der Zant, J. A. Alonso, I. J. Ferrer, T. Wang, R. Frisenda, A. Castellanos-Gomez, Appl. Mater. Today 2021, 23, 101012.
|
[45] |
G. E. Yakovleva, A. I. Romanenko, A. S. Berdinsky, A. Y. Ledneva, V. A. Kuznetsov, M. K. Han, S. J. Kim, V. E. Fedorov, in 2016 39th Int. Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), IEEE, Opatija, Croatia 2016,
CrossRef
Google scholar
|
[46] |
N. Jaziri, A. Boughamoura, J. Müller, B. Mezghani, F. Tounsi, M. Ismail, Energy Rep. 2020, 6, 264.
|
[47] |
P. R. N. Misse, D. Berthebaud, O. I. Lebedev, A. Maignan, E. Guilmeau, Materials 2015, 8, 2514.
|
[48] |
I. J. Ferrer, J. R. Ares, J. M. Clamagirand, M. Barawi, C. Sánchez, Thin Solid Films 2013, 535, 398.
|
[49] |
J. O. Island, G. A. Steele, H. S. J. van der Zant, A. Castellanos-Gomez, 2D Mater. 2015, 2, 011002.
|
[50] |
P. Fan, Z. H. Zheng, Y. Z. Li, Q. Y. Lin, J. T. Luo, G. X. Liang, X. M. Cai, D. P. Zhang, F. Ye, Appl. Phys. Lett. 2015, 106, 073901.
|
[51] |
E. Flores, J. R. Ares, I. J. Ferrer, C. Sánchez, Phys. Status Solidi RRL Rapid Res. Lett. 2016, 10, 802.
|
[52] |
J. E. F. S. Rodrigues, J. Gainza, F. Serrano-Sánchez, C. López, O. J. Dura, N. Nemes, J. L. Martinez, Y. Huttel, F. Fauth, M. T. Fernández-Diaz, N. Biškup, J. A. Alonso, Inorg. Chem. 2020, 59, 14932.
|
/
〈 | 〉 |