Robust Cross-Linked Na3V2(PO4)2F3 Full Sodium-Ion Batteries

Jinqiang Gao, Ye Tian, Lianshan Ni, Baowei Wang, Kangyu Zou, Yingchang Yang, Ying Wang, Craig E. Banks, Dou Zhang, Kechao Zhou, Huan Liu, Wentao Deng, Guoqiang Zou, Hongshuai Hou, Xiaobo Ji

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (1) : 12485. DOI: 10.1002/eem2.12485
RESEARCH ARTICLE

Robust Cross-Linked Na3V2(PO4)2F3 Full Sodium-Ion Batteries

Author information +
History +

Abstract

Sodium-ion batteries (SIBs) have rapidly risen to the forefront of energy storage systems as a promising supplementary for Lithium-ion batteries (LIBs). Na3V2(PO4)2F3 (NVPF) as a common cathode of SIBs, features the merits of high operating voltage, small volume change and favorable specific energy density. However, it suffers from poor cycling stability and rate performance induced by its low intrinsic conductivity. Herein, we propose an ingenious strategy targeting superior SIBs through cross-linked NVPF with multi-dimensional nanocarbon frameworks composed of amorphous carbon and carbon nanotubes (NVPF@C@CNTs). This rational design ensures favorable particle size for shortened sodium ion transmission pathway as well as improved electronic transfer network, thus leading to enhanced charge transfer kinetics and superior cycling stability. Benefited from this unique structure, significantly improved electrochemical properties are obtained, including high specific capacity (126.9 mAh g-1 at 1 C, 1 C = 128 mA g-1) and remarkably improved long-term cycling stability with 93.9% capacity retention after 1000 cycles at 20 C. The energy density of 286.8 Wh kg-1 can be reached for full cells with hard carbon as anode (NVPF@C@CNTs//HC). Additionally, the electrochemical performance of the full cell at high temperature is also investigated (95.3 mAh g-1 after 100 cycles at 1 C at 50 ℃). Such nanoscale dual-carbon networks engineering and thorough discussion of ion diffusion kinetics might make contributions to accelerating the process of phosphate cathodes in SIBs for large-scale energy storages.

Keywords

dual-nanocarbon networks / full sodium-ion battery / ion transfer kinetics / Na3V2(PO4)2F3 / NASICON structure

Cite this article

Download citation ▾
Jinqiang Gao, Ye Tian, Lianshan Ni, Baowei Wang, Kangyu Zou, Yingchang Yang, Ying Wang, Craig E. Banks, Dou Zhang, Kechao Zhou, Huan Liu, Wentao Deng, Guoqiang Zou, Hongshuai Hou, Xiaobo Ji. Robust Cross-Linked Na3V2(PO4)2F3 Full Sodium-Ion Batteries. Energy & Environmental Materials, 2024, 7(1): 12485 https://doi.org/10.1002/eem2.12485

References

[1]
H. Song, K. Eom, Adv. Funct. Mater. 2020, 30, 2003086.
[2]
Q. Li, Z. Liu, F. Zheng, R. Liu, J. Lee, G. Xu, G. Zhong, X. Hou, R. Fu, Z. Chen, K. Amine, J. Mi, S. Wu, C. Grey, Y. Yang, Angew. Chem. Int. Ed. 2018, 57, 11918.
[3]
Y. You, A. Manthiram, Adv Energy Mater 2017, 8, 1701785.
[4]
Z. Guo, Y. Zhao, Y. Ding, X. Dong, L. Chen, J. Cao, C. Wang, Y. Xia, H. Peng, Y. Wang, Chem 2017, 3, 348.
[5]
Y. Fang, L. Xiao, X. Ai, Y. Cao, H. Yang, Adv. Mater. 2015, 27, 5895.
[6]
X. Rui, W. Sun, C. Wu, Y. Yu, Q. Yan, Adv. Mater. 2015, 27, 6670.
[7]
P. Wang, Y. You, Y. Yin, Y. Wang, L. Wan, L. Gu, Y. Guo, Angew. Chem. Int. Ed. 2016, 55, 7445.
[8]
Y. Xiao, P. Wang, Y. Yin, Y. Zhu, Y. Niu, X. Zhang, J. Zhang, X. Yu, X. Guo, B. Zhong, Y. Guo, Adv. Mater. 2018, 30, 1803765.
[9]
S. Chen, C. Wu, L. Shen, C. Zhu, Y. Huang, K. Xi, J. Maier, Y. Yu, Adv. Mater. 2017, 29, 1700431.
[10]
Z. Jian, Y. Hu, X. Ji, W. Chen, Adv. Mater. 2017, 29, 1601925.
[11]
R. Rajagopalan, B. Chen, Z. Zhang, X. Wu, Y. Du, Y. Huang, B. Li, Y. Zong, J. Wang, G. Nam, M. Sindoro, S. Dou, H. Liu, H. Zhang, Adv. Mater. 2017, 29, 1605694.
[12]
J. Guo, P. Wang, X. L. Wu, X. Zhang, Q. Yan, H. Chen, J. Zhang, Y. Guo, Adv. Mater. 2017, 29, 1701968.
[13]
B. Zhang, R. Dugas, G. Rousse, P. Rozier, A. Abakumov, J. Tarascon, Nat. Commun. 2016, 7, 10308.
[14]
G. Yan, S. Mariyappan, G. Rousse, Q. Jacquet, M. Deschamps, R. David, B. Mirvaux, J. W. Freeland, J. M. Tarascon, Nat. Commun. 2019, 10, 585.
[15]
F. Li, Y. F. Zhao, L. S. Xia, Z. D. Yang, J. P. Wei, Z. Zhou, J. Mater. Chem. A 2020, 8, 12931.
[16]
M. Peng, B. Li, H. Yan, D. Zhang, X. Wang, D. Xia, G. Guo, Angew. Chem. Int. Ed. 2015, 54, 6452.
[17]
Y. Qi, Z. Tong, J. Zhao, L. Ma, T. Wu, H. Liu, C. Yang, J. Lu, Y.-S. Hu, Joule 2018, 2, 2348.
[18]
F. Li, Z. Zhou, Small 2018, 14, 1702961.
[19]
C. Zhu, P. Kopold, P. van Aken, J. Maier, Y. Yu, Adv. Mater. 2016, 28, 2409.
[20]
M. Chen, L. Chen, Z. Hu, Q. Liu, B. Zhang, Y. Hu, Q. Gu, J. Wang, L. Wang, X. Guo, S. Chou, S. Dou, Adv. Mater. 2017, 29, 1605535.
[21]
H. Hou, C. Banks, M. Jing, Y. Zhang, X. Ji, Adv. Mater. 2015, 27, 7861.
[22]
Q. Liu, D. Wang, X. Yang, N. Chen, C. Wang, X. Bie, Y. Wei, G. Chen, F. Du, J. Mater. Chem. A 2015, 3, 21478.
[23]
Y. Zhang, T. Wang, Y. K. Tang, Y. D. Huang, D. Z. Jia, Y. Guo, Z. Zhou, J. Power Sources 2021, 516, 230515.
[24]
W. Shen, H. Li, Z. Guo, C. Wang, Z. Li, Q. Xu, H. Liu, Y. Wang, Y. Xia, ACS Appl. Mater. Interfaces 2016, 8, 15341.
[25]
W. Song, X. Cao, Z. Wu, J. Chen, Y. Zhu, H. Hou, Q. Lan, X. Ji, Langmuir 2014, 30, 12438.
[26]
W. Song, X. Ji, Z. Wu, Y. Yang, Z. Zhou, F. Li, Q. Chen, C. E. Banks, J. Power Sources 2014, 256, 258.
[27]
J. Hou, M. Hadouchi, L. Sui, J. Liu, M. Tang, W. Kan, M. Avdeev, G. Zhong, Y. Liao, Y. Lai, Y. Chu, H. Lin, C. Chen, Z. Hu, Y. Huang, J. Ma, Energy Stor. Mater. 2021, 42, 307.
[28]
G. Cui, Q. Dong, Z. Wang, X. Liao, S. Yuan, M. Jiang, Y. Shen, H. Wang, H. Che, Y. He, Z. Ma, Nano Energy 2021, 89, 106003.
[29]
K. Zhang, X. Zhang, W. He, W. Xu, G. Xu, X. Yi, X. Yang, J. Zhu, J. Mater. Chem. A 2019, 7, 9890.
[30]
B. Hou, Y. Wang, Q. Ning, W. Li, X. Xi, X. Yang, H. Liang, X. Feng, X. Wu, Adv. Mater. 2019, 31, 1903125.
[31]
Z. Li, Z. Jian, X. Wang, I. Rodriguez, C. Bommier, X. Ji, Chem. Commun. (Camb.) 2017, 53, 2610.
[32]
X. Shen, Q. Zhou, M. Han, X. Qi, B. Li, Q. Zhang, J. Zhao, C. Yang, H. Liu, Y. Hu, Nat. Commun. 2021, 12, 2848.
[33]
S. Oh, S. Myung, C. Yoon, J. Lu, J. Hassoun, B. Scrosati, K. Amine, Y. Sun, Nano Lett. 2014, 14, 1620.
[34]
M. Lopez, M. Aragon, G. Ortiz, P. Lavela, R. Alcantara, J. Tirado, Chemistry 2015, 21, 14879.
[35]
Y. Sun, L. Zhao, H. Pan, X. Lu, L. Gu, Y. Hu, H. Li, M. Armand, Y. Ikuhara, L. Chen, X. Huang, Nat. Commun. 2013, 4, 1870.
[36]
Y. Fang, L. Xiao, J. Qian, Y. Cao, X. Ai, Y. Huang, H. Yang, Adv. Energy Mater. 2016, 6, 1502197.
[37]
Y. Cai, X. Cao, Z. Luo, G. Fang, F. Liu, J. Zhou, A. Pan, S. Liang, Adv. Sci. 2018, 5, 1800680.
[38]
W. Ren, Z. Zheng, C. Xu, C. Niu, Q. Wei, Q. An, K. Zhao, M. Yan, M. Qin, L. Mai, Nano Energy 2016, 25, 145.
[39]
C. Yang, X. Ji, X. Fan, T. Gao, L. Suo, F. Wang, W. Sun, J. Chen, L. Chen, F. Han, L. Miao, K. Xu, K. Gerasopoulos, C. Wang, Adv. Mater. 2017, 29, 1701972.
[40]
L. Dong, L. Chen, X. Su, Y. Wang, Y. Xia, Angew. Chem. Int. Ed. 2016, 55, 7474.

RIGHTS & PERMISSIONS

2022 2022 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
PDF

Accesses

Citations

Detail

Sections
Recommended

/