Electrostatic Interaction-directed Construction of Hierarchical Nanostructured Carbon Composite with Dual Electrical Conductive Networks for Zinc-ion Hybrid Capacitors with Ultrastability
Changyu Leng, Zongbin Zhao, Xuzhen Wang, Yuliya V. Fedoseeva, Lyubov G. Bulusheva, Alexander V. Okotrub, Jian Xiao, Jieshan Qiu
Electrostatic Interaction-directed Construction of Hierarchical Nanostructured Carbon Composite with Dual Electrical Conductive Networks for Zinc-ion Hybrid Capacitors with Ultrastability
Metal-organic framework (MOF)-derived carbon composites have been considered as the promising materials for energy storage. However, the construction of MOF-based composites with highly controllable mode via the liquid-liquid synthesis method has a great challenge because of the simultaneous heterogeneous nucleation on substrates and the self-nucleation of individual MOF nanocrystals in the liquid phase. Herein, we report a bidirectional electrostatic generated self-assembly strategy to achieve the precisely controlled coatings of single-layer nanoscale MOFs on a range of substrates, including carbon nanotubes (CNTs), graphene oxide (GO), MXene, layered double hydroxides (LDHs), MOFs, and SiO2. The obtained MOF-based nanostructured carbon composite exhibits the hierarchical porosity (Vmeso/Vmicro: 2.4), ultrahigh N content of 12.4 at.% and “dual electrical conductive networks.” The assembled aqueous zinc-ion hybrid capacitor (ZIC) with the prepared nanocarbon composite as a cathode shows a high specific capacitance of 236 F g-1 at 0.5 A g-1, great rate performance of 98 F g-1 at 100 A g-1, and especially, an ultralong cycling stability up to 230 000 cycles with the capacitance retention of 90.1%. This work develops a repeatable and general method for the controlled construction of MOF coatings on various functional substrates and further fabricates carbon composites for ZICs with ultrastability.
carbon composite / electrostatic interaction / metal-organic framework coating / self-assembly / zinc-ion hybrid capacitor
[1] |
J. Yin, W. Zhang, N. A. Alhebshi, N. Salah, H. N. Alshareef, Adv. Energy Mater. 2021, 11, 2100201.
|
[2] |
H. Wang, W. Ye, Y. Yang, Y. Zhong, Y. Hu, Nano Energy 2021, 85, 105942.
|
[3] |
H. Tang, J. Yao, Y. Zhu, Adv. Energy Mater. 2021, 11, 2003994.
|
[4] |
L. Dong, W. Yang, W. Yang, Y. Li, W. Wu, G. Wang, J. Mater. Chem. A 2018, 7, 13810.
|
[5] |
Z. Li, Y. An, S. Dong, C. Chen, L. Wu, Y. Sun, X. Zhang, Energy Storage Mater. 2020, 31, 252.
|
[6] |
L. Dong, X. Ma, Y. Li, L. Zhao, W. Liu, J. Cheng, C. Xu, B. Li, Q. Yang, F. Kang, Energy Storage Mater. 2018, 13, 96.
|
[7] |
H. Wang, M. Wang, Y. Tang, Energy Storage Mater. 2018,
CrossRef
Google scholar
|
[8] |
L. He, Y. Liu, C. Li, D. Yang, W. Wang, W. Yan, W. Zhou, Z. Wu, L. Wang, Q. Huang, Y. Zhu, Y. Chen, L. Fu, X. Hou, Y. Wu, ACS Appl. Energy Mater. 2019, 2, 5835.
|
[9] |
D. Wang, F. Li, M. Liu, G. Q. Lu, H. M. Cheng, Angew. Chem. Int. Ed. 2008, 47, 373.
|
[10] |
S. Chen, L. Ma, K. Zhang, M. Kamruzzaman, C. Zhi, J. Zapien, J. Mater. Chem. A 2019, 7, 7784.
|
[11] |
Y. Zheng, W. Zhao, D. Jia, Y. Liu, L. Cui, D. Wei, R. Zheng, J. Liu, Chem. Eng. J. 2020, 387, 124161.
|
[12] |
X. Deng, J. Li, L. Ma, N. Zhao, J. Mater. Chem. A 2020, 8, 11617.
|
[13] |
Q. Yang, Y. Guo, B. Yan, C. Wang, Z. Liu, Z. Huang, Y. Wang, Y. Li, H. Li, L. Song, J. Fan, C. Zhi, Adv. Mater. 2020, 32, 2001755.
|
[14] |
T. Xiong, Y. Shen, W. S. V. Lee, J. Xue, Nano Mater. Sci. 2020, 2, 159.
|
[15] |
Y. Zhu, X. Ye, H. Jiang, J. Xia, Z. Yue, L. Wang, Z. Wan, C. Jia, X. Yao, J. Power Sources 2020, 453, 227851.
|
[16] |
L. Zhang, D. Wu, G. Wang, Y. Xu, H. Li, X. Yan, Chin. Chem. Lett. 2021, 32, 926.
|
[17] |
Y. Zhao, Z. Song, X. Li, Q. Sun, N. Cheng, S. Lawes, X. Sun, Energy Storage Mater. 2016, 2, 35.
|
[18] |
Q. Zhu, Q. Xu, Chem. Soc. Rev. 2014, 43, 5568.
|
[19] |
J. Zhou, L. Jiang, C. Shu, L. Kong, I. Ahmad, Y. Zhou, W. Tang, X. Sun, Y. Wu, Energy Environ. Mater. 2021, 4, 569.
|
[20] |
Y. Yan, X. Liu, J. Yan, C. Guan, J. Wang, Energy Environ. Mater. 2021, 4, 502.
|
[21] |
S. Jiang, J. Ding, R. Wang, F. Chen, J. Sun, Y. Deng, X. Li, Rare Metals 2021, 40, 3520.
|
[22] |
Y. An, T. Liu, C. Li, X. Zhang, T. Hu, X. Sun, K. Wang, C. Wang, Y. Ma, J. Mater. Chem. A 2021, 9, 15654.
|
[23] |
Y. Li, P. Lu, P. Shang, L. Wu, X. Wang, Y. Dong, R. He, Z. Wu, J. Energy Chem. 2021, 56, 404.
|
[24] |
J. Meng, X. Liu, C. Niu, Q. Pang, J. Li, F. Liu, Z. Liu, L. Mai, Chem. Soc. Rev. 2020, 49, 3142.
|
[25] |
S. Yang, J. Choi, H. Chae, J. Cho, K. Nahm, C. Park, Chem. Mater. 1893, 2009, 21.
|
[26] |
M. Jahan, Z. Liu, K. Loh, Adv. Funct. Mater. 2013, 23, 5363.
|
[27] |
C. Petit, T. Bandosz, Adv. Mater. 2009, 21, 4753.
|
[28] |
H. Zou, B. He, P. Kuang, J. Yu, K. Fan, ACS Appl. Mater. Interfaces 2018, 10, 22311.
|
[29] |
H. Saini, N. Srinivasan, V. Sedajova, M. Majumder, D. Dubal, M. Otyepka, R. Zboril, N. Kurra, R. Fischer, K. Jayaramulu, ACS Nano 2021, 15, 18742.
|
[30] |
S. Hermes, D. Zacher, A. Baunemann, C. Wöll, R. Fischer, Chem. Mater. 2007, 19, 2168.
|
[31] |
H. Hosseini, H. Ahmar, A. Dehghani, A. Bagheri, A. Fakhari, M. Amini, Electrochim. Acta 2013, 88, 301.
|
[32] |
Z. Li, M. Shao, L. Zhou, R. Zhang, C. Zhang, M. Wei, D. Evans, X. Duan, Adv. Mater. 2016, 28, 2337.
|
[33] |
Y. Liu, N. Wang, J. Pan, F. Steinbach, J. Caro, J. Am. Chem. Soc. 2014, 136, 14353.
|
[34] |
X. Yang, X. Jiang, Y. Huang, Z. Guo, L. Shao, ACS Appl. Mater. Interfaces 2017, 9, 5590.
|
[35] |
M. Anbia, V. Hoseini, Chem. Eng. J. 2012, 191, 326.
|
[36] |
C. Liu, Y. Bai, W. Li, F. Yang, G. Zhang, H. Pang, Angew. Chem. 2022, 134, e202116282.
|
[37] |
H. Zhong, J. Wang, Y. Zhang, W. Xu, W. Xing, D. Xu, Y. Zhang, X. Zhang, Angew. Chem. Int. Ed. 2014, 53, 14235.
|
[38] |
J. Wang, T. Zhao, Z. Yang, Y. Chen, Y. Liu, J. Wang, P. Zhai, W. Wu, ACS Appl. Mater. Interfaces 2019, 11, 38654.
|
[39] |
Y. Fu, C. Yang, X. Yan, Chem-Eur J. 2013, 19, 13484.
|
[40] |
R. Yuksel, O. Buyukcakir, W. Seong, R. S. Ruoff, Adv. Energy Mater. 2020, 10, 1904215.
|
[41] |
P. A. Gerola, F. P. Costa, H. F. Quina, D. H. Fiedler, F. Nome, Curr. Opin. Colloid In. 2017, 32, 39.
|
[42] |
A. Wu, Y. Gao, L. Zheng, Green Chem. 2019, 21, 4290.
|
[43] |
J. Troyano, A. Sanchez, C. Avci, I. Imaza, D. Maspoch, Chem. Soc. Rev. 2019, 48, 5534.
|
[44] |
C. Leng, Z. Zhao, J. Guo, R. Li, X. Wang, J. Xiao, Y. V. Fedoseeva, L. G. Bulusheva, J. Qiu, Chem. Commun. 2021, 57, 8778.
|
[45] |
S. Wu, Y. Chen, T. Jiao, J. Zhou, J. Cheng, B. Liu, S. Yang, K. Zhang, W. Zhang, Adv. Energy Mater. 2019, 9, 1902915.
|
[46] |
Q. Wang, S. Wang, X. Guo, L. Ruan, N. Wei, Y. Ma, J. Li, M. Wang, W. Li, W. Zeng, Adv. Electron. Mater. 2019, 5, 1900537.
|
[47] |
H. Zhou, C. Liu, J. C. Wu, M. Liu, D. Zhang, H. Song, X. Zhang, H. Gao, J. Yang, D. Chen, J. Mater. Chem. A 2019, 7, 9708.
|
[48] |
J. Yin, W. Zhang, W. Wang, N. A. Alhebshi, N. Salah, H. N. Alshareef, Adv. Energy Mater. 2020, 10, 2001705.
|
[49] |
H. Zhang, Q. Liu, Y. Fang, C. Teng, X. Liu, P. Fang, Y. Tong, X. Lu, Adv. Mater. 2019, 31, 1904948.
|
[50] |
Y. Shao, Z. Sun, Z. Tian, S. Li, G. Wu, M. Wang, X. Tong, F. Shen, Z. Xia, V. Tung, J. Sun, Y. Shao, Adv. Funct. Mater. 2021, 31, 2007843.
|
[51] |
P. Yu, Y. Zeng, Y. Zeng, H. Dong, H. Hu, Y. Liu, M. Zheng, Y. Xiao, X. Lu, Y. Liang, Electrochim. Acta 2019, 327, 134999.
|
[52] |
Z. Li, D. Chen, Y. An, C. Chen, L. Wu, Z. Chen, Y. Sun, X. Zhang, Energy Storage Mater. 2020, 28, 307.
|
[53] |
Y. Lu, Z. Li, Z. Bai, H. Mi, C. Ji, H. Pang, C. Yu, J. Qiu, Nano Energy 2019, 66, 104132.
|
[54] |
P. Liu, Y. Gao, Y. Tan, W. Liu, Y. Huang, J. Yan, K. Liu, Nano Res. 2019, 12, 2835.
|
[55] |
Z. Huang, Y. Song, Y. Dong, Z. Sun, X. Sun, X. Liu, ACS Nano 2018, 12, 3557.
|
[56] |
D. Becke, J. Chem. Phys. 1993, 98, 5648.
|
[57] |
C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
|
[58] |
S. Grimme, J. Antony, S. Ehrlich, J. Chem. Phys. 2010, 132, 154104.
|
[59] |
L. Goerigk, S. Grimme, Phys. Chem. Chem. Phys. 2011, 13, 6670.
|
[60] |
A. D. Bochevarov, E. Harder, T. F. Hughes, J. R. Greenwood, D. A. Braden, D. M. Philipp, D. Rinaldo, M. D. Halls, J. Zhang, R. A. Friesner, Int. J. Quantum Chem. 2013, 113, 2110.
|
/
〈 | 〉 |