2023-10-28 2023, Volume 2 Issue 4

  • Select all
  • review-article
    Marta Turull, Gianluigi Buttiglieri, Valeria Vazquez, Sara Rodriguez-Mozaz, Lúcia H.M.L.M. Santos

    A multi-residue analytical methodology for the determination of 25 endocrine disrupting compounds (EDCs), encompassing various chemical classes (hormones, antimicrobials, preservatives, plasticizers, stimulants, alkylphenolic compounds, anticorrosives, and organophosphorus flame retardants), has been upgraded for the analysis of greywater. The methodology is based on solid phase extraction (SPE) followed by ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The optimized methodology achieved recoveries between 63% and 146% for all compounds, with MDLs ranging from 0.3 to 141 ng/L. Most of the compounds showed a pronounced signal suppression in the laundry greywater tested, and therefore, quantification was performed with a matrix-matched calibration curve to surpass the matrix effects observed (between -100% and 106%). Additionally, polyvinylidene fluoride (PVDF) membrane filters were selected among several filter types as the most suitable for greywater filtration. The upgraded methodology allowed the detection of 14, four and four EDCs in laundry, kitchen and shower/sink greywater, respectively. Caffeine was the only compound detected in all types of greywater, showing the highest concentrations (> 40,000 ng/L in kitchen greywater, and 2,360 ng/L in laundry greywater), followed by methylparaben and 1H-benzotriazole (1,607 and 776 ng/L, respectively, in laundry greywater). This analytical methodology constitutes an important tool for monitoring different families of contaminants in greywater, a poorly studied matrix, which is nowadays being considered as a future source of freshwater, contributing to overcoming problems of water scarcity. Water monitoring thus helps to guarantee water quality in water reuse practices and to understand EDC exposure patterns and their potential environmental impact.

  • review-article
    Jabed Hasan, Sheik Istiak Md Shahriar, Md Shahjahan

    The worldwide usage of surgical face masks (SFM) has increased rapidly during the COVID-19 pandemic. Its degradation possibly produces billions of microplastics (MPs) in the environment. To quantify the release of microfibers (MFs), unused SFM were treated with eight different aqueous solutions, each with five replications in two categories, i.e., freshwater (FW) treatments [800 mL FW, 40 mL of 95% alcohol + 800 mL FW, 40 mL of 30% H2O2 + 800 mL FW, and 4 g sodium dodecyl sulfate (SDS) + 800 mL FW], and saltwater (SW) treatments (800 mL SW, 40 mL of 95% alcohol + 800 mL SW, 40 mL of 30% H2O2 + 800 mL SW, and 4 g SDS + 800 mL SW) at 25 °C for 60 days. The predominant MFs disposed from SFM were transparent and sized between 1.0 to < 0.5 mm. The mean highest amount of MFs observed was 4,911.3 (1-day) and 6,180.24 (30-day) in sodium dodecyl sulfate (SDS) mixed with SW, and 7,269.7 (60-day) in SDS with FW. The greatest number of MFs released per day was 275 (SDS in SW), followed by 193 (SDS in FW). The results indicated that if different kinds of water are mixed with detergent (SDS), it could accelerate the disposal of MP, whereas SW has considerably higher ability to release more MFs in a shorter time period compared to FW. Furthermore, this study implied that the inappropriate dumping of SFM could unfortunately escalate the preexisting MP pollution in the aquatic environment, which could negatively affect the aquatic living beings.

  • review-article
    Ericka María Guadalupe Martínez-Viveros, Octavio Dublán-García, Karinne Saucedo-Vence, Ana Gabriela Morachis-Valdez, Luis Alberto Cira-Chávez, Leobardo Manuel Gómez-Oliván

    Diabetes mellitus (DM2) was considered a more common comorbidity and was associated with high mortality due to metabolic disease in the COVID-19 pandemic. For this reason, glibenclamide (GLI) was commonly prescribed for its control. However, it has been found in environmentally relevant concentrations in various water reservoirs due to its high consumption. Common carp (Cyprinus carpio), besides its nutritional properties and economic importance, is also considered a good bioindicator for assessing environmental health and pollutants presence; nonetheless, there are currently insufficient studies on the effect of GLI on the physicochemical and textural properties of the muscle of this bioindicator species. In this study, the effect of this drug at two environmentally relevant concentrations (50 and 1,000 ng/L) at five exposure times (every 24 up to 96 h) on the quality of carp muscle was investigated. Parameters such as carbonylated proteins, lipid peroxidation, total sulfhydryl content, water holding capacity, pH, electrophoretic profile, and texture profile analysis were determined. Regardless of the concentration of GLI used, the evaluated parameters showed significant muscle damage; therefore, it must be emphasized that this emerging pollutant not only damages environment, but also affects edible species present in different water reservoirs.

  • review-article
    Christine C. Gaylarde, José Antônio Baptista Neto, Estefan M. da Fonseca

    Microplastics (MPs) have been detected in many parts of the world in snow, hail, sea ice, glaciers, and permafrost. The ubiquity of microplastic around the globe means that there is a need to focus on its circulation dynamics in the Earth's diverse ecosystems; the prominence of MP fibers, which has been indicated as of human clothing and activities, in high altitude frozen water is explained by their enhanced suspension in the air, allowing them to be transported over long distances from urban centers. The MP particles can act as nucleation centers for ice crystals and, once incorporated, reduce the albedo (reflective capacity) of the frozen mass, causing temperature increases. However, cores have indicated that ice in glaciers may remain frozen for thousands of years. This article reviews the quantities and types of MPs that have been detected in snow, hail, sea ice, and glaciers. The potential for release of these, as well as MPs in the permafrost, following global warming, is discussed. As the global warming process evolves, these sites will act as additional sources of MPs accumulated over the course of recent human history. It is important to be aware of the future entry of microplastic into the global environment from these sources, especially into the already fragile extreme ecosystems of the cryosphere.

  • review-article
    Debasish Pal, Subhadeep Biswas, Ashish Kumar Nayak, Anjali Pal

    This paper summarizes the potential of polyoxometalate (POM)-based catalysts in view of pharmaceutical wastewater treatment and recent advances that took place in this field. POMs are anionic clusters of transition metals, which exhibit unique characteristics such as high catalytic activity and multi-electron redox properties. Recently, they have been explored by some research groups for degrading antibiotics and pharmaceutical compounds (PCs) from contaminated water matrix. Several modifications of POM, along with their composite formation with new-age materials like g-C3N4 and reduced graphene oxide (RGO), have led to the formation of novel photocatalysts, which have also been reported as active materials to destroy the PCs. These promising catalysts have revealed the efficiency of complete destruction of these recalcitrant compounds within a short reaction time and showed good reusability characteristics. Among the widely used PCs, the notable ones include tetracycline (TC), sulfamethoxazole (SMX), ciprofloxacin (CIP), etc. Most of the articles cited here centered on TC degradation followed by other drugs. The effects of different operating conditions, degradation efficiency, and mechanism and stability aspects of various POM-based catalysts are discussed. The current knowledge gap in this area with bright future perspectives is also highlighted. The description will provide valuable insight to the research community regarding the capability of POM-based catalysts to eliminate antibiotics, as well as designing highly efficient catalysts for a sustainable future.

  • review-article
    Muhammad Tariq Khan, Mushtaq Ahmad, Md Faysal Hossain, Asim Nawab, Iqbal Ahmad, Khalil Ahmad, Sirima Panyametheekul

    Coagulation is a widely employed technique for removing suspended particles from water and wastewater, and recently, it has gotten attention as a popular method for the removal of microplastics (MPs). Studies on coagulation-based removal of MPs are still in their infancy, and few findings are available about this treatment approach, its mechanism, and removal efficiency. Given these gaps, this study was designed to comprehensively investigate recent advances in the removal of MPs via coagulation. The influence of various experimental factors such as coagulant type, dose of the coagulant, pH of the solution, and shape of the MPs are critically reviewed. The study findings showed that optimizing environmental conditions during the coagulation process is crucial for improving the removal of MPs and reducing energy costs. The study findings showed that the coagulation efficiency of MPs depends on optimal reaction conditions, which may vary depending on the type and concentration of MPs and the characteristics of the water or wastewater being treated. Optimizing these reaction conditions is, therefore, critical to achieving maximum removal efficiency. More extensive research is required to reveal the mechanisms of coagulation in controlling floc density and removing pollutants from effluent. Consequently, the current review aims to highlight the gaps and challenges associated with coagulation techniques for the removal of MPs during wastewater treatment. Current advancements in the synthesis and chemical modification of bio-based coagulants and their coagulation performance for the removal of MPs could constitute a paradigm shift in ecosystem protection and sustainability. The use of eco-friendly coagulants and combining coagulation with other techniques are suggested to increase the efficacy and viability of this method. This review will provide significant insights for field researchers, guiding their future investigations and contributing to the advancement of knowledge.