6G smart fog radio access network: Architecture, key technologies, and research challenges

Lincong Zhang , Mingyang Zhang , Xiangyu Liu , Lei Guo

›› 2025, Vol. 11 ›› Issue (3) : 898 -911.

PDF
›› 2025, Vol. 11 ›› Issue (3) : 898 -911. DOI: 10.1016/j.dcan.2024.10.002
Original article

6G smart fog radio access network: Architecture, key technologies, and research challenges

Author information +
History +
PDF

Abstract

The 6G smart Fog Radio Access Network (F-RAN) is an integration of 6G network intelligence technologies and the F-RAN architecture. Its aim is to provide low-latency and high-performance services for massive access devices. However, the performance of current 6G network intelligence technologies and its level of integration with the architecture, along with the system-level requirements for the number of access devices and limitations on energy consumption, have impeded further improvements in the 6G smart F-RAN. To better analyze the root causes of the network problems and promote the practical development of the network, this study used structured methods such as segmentation to conduct a review of the topic. The research results reveal that there are still many problems in the current 6G smart F-RAN. Future research directions and difficulties are also discussed.

Keywords

6G / Smart technology / Smart fog radio access network / Artificial intelligence / Non-orthogonal multiple access / Reconfigurable intelligent surface

Cite this article

Download citation ▾
Lincong Zhang, Mingyang Zhang, Xiangyu Liu, Lei Guo. 6G smart fog radio access network: Architecture, key technologies, and research challenges. , 2025, 11(3): 898-911 DOI:10.1016/j.dcan.2024.10.002

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Lincong Zhang: Writing - review & editing, Writing - original draft, Methodology. Mingyang Zhang: Writing - original draft, Investigation. Xiangyu Liu: Writing - review & editing, Validation, Supervision, Funding acquisition. Lei Guo: Writing - review & editing, Validation, Supervision.

Declaration of Competing Interest

The authors declared no potential conflict of interest with respect to the research, authorship, and publication of this article.

The authors declared that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Acknowledgements

This work is supported by the National Natural Science Foundation of China (62202215), Liaoning Province Applied Basic Research Program (Youth Special Project, 2023JH2/101600038), Shenyang Youth Science and Technology Innovation Talent Support Program (RC220458), Guangxuan Program of Shenyang Ligong University (SYLUGXRC202216), Basic Research Special Funds for Undergraduate Universities in Liaoning Province (LJ212410144067).

References

[1]

F. Guo, F.R. Yu, H. Zhang, X. Li, H. Ji, V.C. Leung,Enabling massive iot toward 6g: a comprehensive survey, IEEE Int. Things J. 8 (15) (2021) 11891-11915.

[2]

N. Khiadani,Vision, requirements and challenges of sixth generation (6g) networks, in: 2020 6th Iranian Conference on Signal Processing and Intelligent Systems (IC-SPIS), IEEE, 2020, pp. 1-4.

[3]

M.E. Morocho-Cayamcela, H. Lee, W. Lim,Machine learning for 5g/b5g mobile and wireless communications: potential, limitations, and future directions, IEEE Access 7 (2019) 137184-137206.

[4]

S. Chen, S. Sun, S. Kang,System integration of terrestrial mobile communication and satellite communication—the trends, challenges and key technologies in b5g and 6g, China Commun. 17 (12) (2020) 156-171.

[5]

G. Zhu, Z. Lyu, X. Jiao, P. Liu, M. Chen, J. Xu, S. Cui, P. Zhang,Pushing ai to wireless network edge: an overview on integrated sensing, communication, and computation towards 6g, Sci. China Inf. Sci. 66 (3) (2023) 130301.

[6]

Y.L. Lee, D. Qin, L.-C. Wang, G.H. Sim,6g massive radio access networks: key applications, requirements and challenges, IEEE Open J. Veh. Technol. 2 (2020) 54-66.

[7]

M. Shahjalal, W. Kim, W. Khalid, S. Moon, M. Khan, S. Liu, S. Lim, E. Kim, D.-W. Yun, J. Lee, et al., Enabling technologies for ai empowered 6g massive radio access networks, ICT Express 9 (3) (2023) 341-355.

[8]

C. Huang, S. Hu, G.C. Alexandropoulos, A. Zappone, C. Yuen, R. Zhang, M. Di Renzo, M. Debbah,Holographic mimo surfaces for 6g wireless networks: opportu-nities, challenges, and trends, IEEE Wirel. Commun. 27 (5) (2020) 118-125.

[9]

A. Clemm, M.T. Vega, H.K. Ravuri, T. Wauters, F. De Turck, Toward truly immersive holographic-type communication: challenges and solutions, IEEE Commun. Mag. 58 (1) (2020) 93-99.

[10]

J. Zhang, Y. Huang, J. Wang, X. You, C. Masouros, Intelligent interactive beam training for millimeter wave communications, IEEE Trans. Wirel. Commun. 20 (3) (2020) 2034-2048.

[11]

K.A. Szczurek, R.M. Prades, E. Matheson, J. Rodriguez-Nogueira, M. Di Castro, Mul-timodal multi-user mixed reality human-robot interface for remote operations in hazardous environments, IEEE Access 11 (2023) 17305-17333.

[12]

F. Vicentini, Collaborative robotics: a survey, J. Mech. Des. 143 (4) (2021) 040802.

[13]

T. Sorell, Cobots, “co-operation” and the replacement of human skill, Ethics Inf. Technol. 24 (4) (2022) 44.

[14]

M.M. Rathore, S.A. Shah, D. Shukla, E. Bentafat, S. Bakiras, The role of ai, ma-chine learning, and big data in digital twinning: a systematic literature review, challenges, and opportunities, IEEE Access 9 (2021) 32030-32052.

[15]

S. Perera, K. Seyan, P-06-8 digital healthcare access and use by transgender indi-viduals, The Journal of Sexual Medicine 17 (6) (2020) S209.

[16]

R.S. Peres, X. Jia, J. Lee, K. Sun, A.W. Colombo, J. Barata,Industrial artificial in-telligence in industry 4.0-systematic review, challenges and outlook, IEEE Access 8 (2020) 220121-220139.

[17]

S.R. Gundu, P. Charanarur, K.K. Chandelkar, D. Samanta, R.C. Poonia, P. Chakraborty, Sixth-generation (6g) mobile cloud security and privacy risks for ai system using high-performance computing implementation, Wirel. Commun. Mob. Comput. 2022 ( 2022) 1-14.

[18]

J.O. Ogbebor, A.L. Imoize, A.A.-A. Atayero, Energy efficient design techniques in next-generation wireless communication networks: emerging trends and future di-rections, Wirel. Commun. Mob. Comput. 2020 ( 2020) 1-19.

[19]

H. Zhang, H. Zhang, B. Di, M. Di Renzo, Z. Han, H.V. Poor, L. Song, Holographic integrated sensing and communication, IEEE J. Sel. Areas Commun. 40 (7) (2022) 2114-2130.

[20]

A. Mohamed, M.K. Najafabadi, Y.B. Wah, E.A.K. Zaman, R. Maskat, The state of the art and taxonomy of big data analytics: view from new big data framework, Artif. Intell. Rev. 53 (2020) 989-1037.

[21]

K. Ramezanpour, J. Jagannath,Intelligent zero trust architecture for 5g/6g net-works: principles, challenges, and the role of machine learning in the context of o-ran, Comput. Netw. 217 (2022) 109358.

[22]

H. Liu, J. Zong, Q. Wang, Y. Liu, F. Yang,Cloud native based intelligent ran architec-ture towards 6g programmable networking, in: 2022 7th International Conference on Computer and Communication Systems (ICCCS), IEEE, 2022, pp. 623-627.

[23]

X. Lv, H. Rui, J. Xu,Double layers flexible radio access network: user cluster centric architecture towards 6g, in: GLOBECOM 2022-2022 IEEE Global Communications Conference, IEEE, 2022, pp. 2831-2836.

[24]

J. Mei, X. Wang, K. Zheng,An intelligent self-sustained ran slicing framework for diverse service provisioning in 5g-beyond and 6g networks, Intell. Converg. Netw. 1 (3) (2020) 281-294.

[25]

R. Bolla, R. Bruschi, C. Lombardo, B. Siccardi,6g enablers for zero-carbon network slices and vertical edge services, IEEE Network. Lett. (2023).

[26]

F. Kooshki, M.A. Rahman, M.M. Mowla, A.G. Armada, A. Flizikowski,Efficient ra-dio resource management for future 6g mobile networks: a cell-less approach, IEEE Network. Lett. (2023).

[27]

M.A. Habibi, B. Han, A. Fellan, W. Jiang, A.G. Sánchez, I.L. Pavón, A. Boubendir, H.D. Schotten,Towards an open, intelligent, and end-to-end architectural frame-work for network slicing in 6g communication systems, IEEE Open J. Commun. Soc. (2023).

[28]

H. Jiang, L. Chen, X. Song, X. Liu, Resource allocation scheme for fog-enabled wire-less access networks under the qos of users, Mob. Inf. Syst. 2021 ( 2021) 1-10.

[29]

L. Chen, Z. Jiang, D. Yang, C. Wang, et al., Fog radio access network optimization for 5g leveraging user mobility and traffic data, J. Netw. Comput. Appl. 191 (2021) 103083.

[30]

A. Bani-Bakr, K. Dimyati, M.N. Hindia, W.R. Wong, A. Al-Omari, Y.A. Sambo, M.A. Imran, Optimizing the number of fog nodes for finite fog radio access networks under multi-slope path loss model, Electronics 9 (12) (2020) 2175.

[31]

B. Guo, X. Zhang, Q. Sheng, H. Yang, Dueling deep-q-network based delay-aware cache update policy for mobile users in fog radio access networks, IEEE Access 8 (2020) 7131-7141.

[32]

Y. Jiang, Y. Hu, M. Bennis, F.-C. Zheng, X. You, A mean field game-based distributed edge caching in fog radio access networks, IEEE Trans. Commun. 68 (3) (2019) 1567-1580.

[33]

Y. Jiang, W. Huang, M. Bennis, F.-C. Zheng, Decentralized asynchronous coded caching design and performance analysis in fog radio access networks, IEEE Trans. Mob. Comput. 19 (3) (2019) 540-551.

[34]

S. Yan, M. Jiao, Y. Zhou, M. Peng, M. Daneshmand, Machine-learning approach for user association and content placement in fog radio access networks, IEEE Int. Things J. 7 (10) (2020) 9413-9425.

[35]

W. Bai, T. Yao, H. Zhang, V.C. Leung, Research on channel power allocation of fog wireless access network based on noma, IEEE Access 7 (2019) 32867-32873.

[36]

G.S. Rahman, M. Peng, S. Yan, T. Dang, Learning based joint cache and power allocation in fog radio access networks, IEEE Trans. Veh. Technol. 69 (4) (2020) 4401-4411.

[37]

H. Xiang, M. Peng, Y. Sun, S. Yan, Mode selection and resource allocation in sliced fog radio access networks: a reinforcement learning approach, IEEE Trans. Veh. Technol. 69 (4) (2020) 4271-4284.

[38]

F. Bonomi, R. Milito, J. Zhu, S. Addepalli,Fog computing and its role in the internet of things, in:Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, 2012, pp. 13-16.

[39]

Z.-z. Liu, S.-n. Li, Sensor-cloud data acquisition based on fog computation and adaptive block compressed sensing, Int. J. Distrib. Sens. Netw. 14 (9) (2018) 1550147718802259.

[40]

H. Gupta, A. Vahid Dastjerdi, S.K. Ghosh, R. Buyya, ifogsim: a toolkit for modeling and simulation of resource management techniques in the internet of things, edge and fog computing environments, Softw. Pract. Exp. 47 (9) (2017) 1275-1296.

[41]

Z. Wang, L. Liu, C. Fang, X. Wang, P. Si, H. Wu, Optimal linear quadratic control for wireless sensor and actuator networks with random delays and packet dropouts, Int. J. Distrib. Sens. Netw. 14 (6) (2018) 1550147718779560.

[42]

K. Mishra, G.N. Rajareddy, U. Ghugar, G.S. Chhabra, A.H. Gandomi, A collab-orative computation and offloading for compute-intensive and latency-sensitive dependency-aware tasks in dew-enabled vehicular fog computing: a federated deep q-learning approach, IEEE Trans. Netw. Serv. Manag. ( 2023).

[43]

L. Sun, G. Xue, R. Yu, Tafs: a truthful auction for iot application offloading in fog computing networks, IEEE Int. Things J. 10 (4) (2022) 3252-3263.

[44]

M. Goudarzi, M.S. Palaniswami, R. Buyya, A distributed deep reinforcement learn-ing technique for application placement in edge and fog computing environments, IEEE Trans. Mob. Comput. (2021).

[45]

Z. Wang, B. Cao, C. Liu, C. Xu, L. Zhang, Blockchain-based fog radio access net-works: architecture, key technologies, and challenges, Digit. Commun. Netw. 8 (5) (2022) 720-726.

[46]

Y. Ai, G. Qiu, C. Liu, Y. Sun, Joint resource allocation and admission control in sliced fog radio access networks, China Commun. 17 (8) (2020) 14-30.

[47]

L. Qi, M. Peng, Y. Liu, S. Yan, Advanced user association in non-orthogonal multi-ple access-based fog radio access networks, IEEE Trans. Commun. 67 (12) (2019) 8408-8421.

[48]

H.T. Nguyen, H.D. Tuan, T.Q. Duong, H.V. Poor, W.-J. Hwang, Nonsmooth opti-mization algorithms for multicast beamforming in content-centric fog radio access networks, IEEE Trans. Signal Process. 68 (2020) 1455-1469.

[49]

W. Wu, M. Peng, W. Chen, S. Yan, Unsupervised deep transfer learning for fault diagnosis in fog radio access networks, IEEE Int. Things J. 7 (9) (2020) 8956-8966.

[50]

Z. Mao, S. Yan, Deep learning based channel estimation in fog radio access net-works, China Commun. 16 (11) (2019) 16-28.

[51]

M. Kaneko, L. Boukhatem, N. Pontois, H.-L. Thi, User pre-scheduling and beam-forming with imperfect csi for future cloud/fog-radio access networks, IEICE Trans. Commun. 102 (7) (2019) 1230-1239.

[52]

L. Wang, X. Lin, E. Zima, C. Ma, Towards airbnb-like privacy-enhanced private parking spot sharing based on blockchain, IEEE Trans. Veh. Technol. 69 (3) (2020) 2411-2423.

[53]

X. Jia, D. He, N. Kumar, K.-K.R. Choo, A provably secure and efficient identity-based anonymous authentication scheme for mobile edge computing, IEEE Syst. J. 14 (1) (2019) 560-571.

[54]

F. Jiang, W. Cheng, Y. Gao, C. Sun,Caching strategy based on content popularity prediction using federated learning for f-ran, in: 2021 IEEE/CIC International Con-ference on Communications in China (ICCC Workshops), IEEE, 2021, pp. 19-24.

[55]

F. Jiang, Z. Yuan, C. Sun, Y. Ren, J. Wang,Learning-based content caching with update strategy for fog radio access networks, in: 2019 IEEE/CIC International Con-ference on Communications in China (ICCC), IEEE, 2019, pp. 484-489.

[56]

F. Jiang, X. Zhu, C. Sun,Double dqn based computing offloading scheme for fog radio access networks, in: 2021 IEEE/CIC International Conference on Communi-cations in China (ICCC), IEEE, 2021, pp. 1131-1136.

[57]

S. Yan, M. Peng, W. Wang,User access mode selection in fog computing based radio access networks, in: 2016 IEEE International Conference on Communications (ICC), IEEE, 2016, pp. 1-6.

[58]

M. Peng, S. Yan, K. Zhang, C. Wang, Fog-computing-based radio access networks: issues and challenges, IEEE Netw. 30 (4) (2016) 46-53.

[59]

H. Xiang, M. Peng, Y. Cheng, H.-H. Chen,Joint mode selection and resource al-location for downlink fog radio access networks supported d2d, in: 2015 11th International Conference on Heterogeneous Networking for Quality, Reliability, Se-curity and Robustness (QSHINE), IEEE, 2015, pp. 177-182.

[60]

S. Yan, M. Peng, M.A. Abana, W. Wang, An evolutionary game for user access mode selection in fog radio access networks, IEEE Access 5 (2017) 2200-2210.

[61]

Y. Sun, M. Peng, S. Mao, Deep reinforcement learning-based mode selection and resource management for green fog radio access networks, IEEE Int. Things J. 6 (2) (2018) 1960-1971.

[62]

S. Yan, L. Qi, Y. Zhou, M. Peng, G.S. Rahman, Joint user access mode selection and content popularity prediction in non-orthogonal multiple access-based f-rans, IEEE Trans. Commun. 68 (1) (2019) 654-666.

[63]

R. Rai, H. Zhu, J. Wang, Performance analysis of noma enabled fog radio access networks, IEEE Trans. Commun. 69 (1) (2020) 382-397.

[64]

A. Affan, S. Mumtaz, H.M. Asif, L. Musavian,Performance analysis of orbital angu-lar momentum (oam): a 6g waveform design, IEEE Commun. Lett. 25 (12) (2021) 3985-3989.

[65]

Y. Su, H. Gao, S. Zhang,Secure massive mimo system with two-way relay coop-erative transmission in 6g networks, EURASIP J. Wirel. Commun. Netw. 2023 (1) (2023) 73.

[66]

F. Bonomi, R. Milito, P. Natarajan, J. Zhu, Fog computing: a platform for internet of things and analytics, in: Big Data and Internet of Things: A Roadmap for Smart Environments, 2014, pp. 169-186.

[67]

R. Rawat, R.K. Chakrawarti, P. Vyas, J.L.A. Gonzáles, R. Sikarwar, R. Bhardwaj, Intelligent fog computing surveillance system for crime and vulnerability identifi-cation and tracing, Int. J. Inf. Secur. Priv. 17 (1) (2023) 1-25.

[68]

K.-C. Chang, K.-C. Chu, H.-C. Wang, Y.-C. Lin, J.-S. Pan,Energy saving technology of 5g base station based on internet of things collaborative control, IEEE Access 8 (2020) 32935-32946.

[69]

Q. Liu, T. Han, N. Ansari, G. Wu, On designing energy-efficient heterogeneous cloud radio access networks, IEEE Trans. Green Commun. Netw. 2 (3) (2018) 721-734.

[70]

L. Chettri, R. Bera,A comprehensive survey on internet of things (iot) toward 5g wireless systems, IEEE Int. Things J. 7 (1) (2019) 16-32.

[71]

P. Marsch, I. Da Silva, O. Bulakci, M. Tesanovic, S.E. El Ayoubi, T. Rosowski, A. Kaloxylos, M. Boldi, 5g radio access network architecture: design guidelines and key considerations, IEEE Commun. Mag. 54 (11) (2016) 24-32.

[72]

S. Kukliński, L. Tomaszewski, R. Kołakowski, P. Chemouil, 6g-lego: a framework for 6g network slices, J. Commun. Netw. 23 (6) (2021) 442-453.

[73]

T. Dong, Z. Zhuang, Q. Qi, J. Wang, H. Sun, F.R. Yu, T. Sun, C. Zhou, J. Liao, Intelligent joint network slicing and routing via gcn-powered multi-task deep rein-forcement learning, IEEE Trans. Cogn. Commun. Netw. 8 (2) (2021) 1269-1286.

[74]

H. Zhang, G. Pan, S. Xu, S. Zhang, Z. Jiang,A hard and soft hybrid slicing frame-work for service level agreement guarantee via deep reinforcement learning, in: 2022 IEEE 95th Vehicular Technology Conference:(VTC2022-Spring), IEEE, 2022, pp. 1-5.

[75]

K. Sheth, K. Patel, H. Shah, S. Tanwar, R. Gupta, N. Kumar,A taxonomy of ai tech-niques for 6g communication networks, Comput. Commun. 161 (2020) 279-303.

[76]

H. Yang, A. Alphones, Z. Xiong, D. Niyato, J. Zhao, K. Wu,Artificial-intelligence-enabled intelligent 6g networks, IEEE Netw. 34 (6) (2020) 272-280.

[77]

Q. Wang, T. Li, R. Feng, C. Yang, An efficient large resource-user scale scma code-book design method, IEEE Commun. Lett. 23 (10) (2019) 1787-1790.

[78]

H. Wang, Y. Fu, Z. Shi, R. Song,Fractional power control for small cell uplinks with opportunistic noma transmissions, in: ICC 2019-2019 IEEE International Con-ference on Communications (ICC), IEEE, 2019, pp. 1-7.

[79]

M. Venkatesh, S.N.K. Polisetty, C. Srilakshmi, R. Satpathy, P. Neelima, et al., A novel deep learning mechanism for workload balancing in fog computing, in: 2022 International Conference on Automation, Computing and Renewable Systems (ICACRS), IEEE, 2022, pp. 515-519.

[80]

A. Rabay’a, E. Schleicher, K. Graffi,Fog computing with p2p: enhancing fog com-puting bandwidth for iot scenarios, in: 2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), IEEE, 2019, pp. 82-89.

[81]

Q.-V. Pham, F. Fang, V.N. Ha, M.J. Piran, M. Le, L.B. Le, W.-J. Hwang, Z. Ding,A survey of multi-access edge computing in 5g and beyond: fundamentals, technology integration, and state-of-the-art, IEEE Access 8 (2020) 116974-117017.

[82]

L. Zhao, G. Zhou, G. Zheng, I. Chih-Lin, X. You, L. Hanzo,Open-source multi-access edge computing for 6g: opportunities and challenges, IEEE Access 9 (2021) 158426-158439.

[83]

S. Deng, H. Zhao, W. Fang, J. Yin, S. Dustdar, A.Y. Zomaya, Edge intelligence: the confluence of edge computing and artificial intelligence, IEEE Int. Things J. 7 (8) (2020) 7457-7469.

[84]

B. Liu, J. Wang, S. Ma, F. Zhou, Y. Ma, G. Lu, Energy-efficient cooperation in mobile edge computing-enabled cognitive radio networks, IEEE Access 7 (2019) 45382-45394.

[85]

H. Zhang, Y. Qiu, K. Long, G.K. Karagiannidis, X. Wang, A. Nallanathan, Resource allocation in noma-based fog radio access networks, IEEE Wirel. Commun. 25 (3) (2018) 110-115.

[86]

X. Cao, S. Yan, H. Zhang, Resource allocation for network profit maximization in noma-based f-rans: a game-theoretic approach, Front. Inf. Technol. Electron. Eng. 23 (10) (2022) 1546-1561.

[87]

T. Dang, C. Liu, X. Liu, S. Yan, Joint uplink and downlink resource allocation for low-latency mobile virtual reality delivery in fog radio access networks, Front. Inf. Technol. Electron. Eng. 23 (1) (2022) 73-85.

[88]

X. Cao, C. Hu, S. Yan,A matching game approach for joint resource allocation and user association in fog radio access networks, in: 2018 IEEE/CIC International Con-ference on Communications in China (ICCC Workshops), IEEE, 2018, pp. 277-281.

[89]

H. Xiang, W. Zhou, M. Daneshmand, M. Peng, Network slicing in fog radio access networks: issues and challenges, IEEE Commun. Mag. 55 (12) (2017) 110-116.

[90]

B. Yin, M. Peng, S. Yan, C. Hu, Tradeoff between ergodic rate and delivery latency in fog radio access networks, IEEE Trans. Wirel. Commun. 19 (4) (2020) 2240-2251.

[91]

Q. Yu, H. Zhou, J. Chen, Y. Li, J. Jing, J.J. Zhao, B. Qian, J. Wang,A fully-decoupled ran architecture for 6g inspired by neurotransmission, J. Commun. Inf. Netw. 4 (4) (2019) 15-23.

[92]

Y. Liu, Q. Wang, H. Liu, J. Zong, F. Yang, et al., Edge intelligence-based ran archi-tecture for 6g internet of things, Discrete Dyn. Nat. Soc. (2022) 2022.

[93]

R.T. Alliance, Reconfigurable Intelligent Surface Technology White Paper, 2023.

[94]

L. Yang, F. Meng, Q. Wu, D.B. Da Costa, M.-S. Alouini, Accurate closed-form ap-proximations to channel distributions of ris-aided wireless systems, IEEE Wirel. Commun. Lett. 9 (11) (2020) 1985-1989.

[95]

R.P. Sankar, S.P. Chepuri,Beamforming in hybrid ris assisted integrated sensing and communication systems, in: 2022 30th European Signal Processing Conference (EUSIPCO), IEEE, 2022, pp. 1082-1086.

[96]

X. Wang, X. Zhao, Y. Zhang, Y. Liu, S. Li, S. Geng, X. Su, H. Qin, S. Sun,Codebook-based beam tracking for ris assisted mobile mmwave networks, in: 2021 13th International Symposium on Antennas, Propagation and EM Theory (ISAPE), IEEE, 2021, pp. 1-3.

[97]

J. Zhang, T. Chang, Z. Zhong, X. Jin, S. Hu, T. Jin, J. Zhou, M. Zhu, Y. Yu, J. Tang, et al., Capacity and flexibility improvement of traffic aggregation for fixed 5g: key enabling technologies, challenges and trends, China Commun. 19 (12) (2022) 1-13.

[98]

C. Stan, A. Dömeke, C.R. Garcia, I.T. Monroy, J.V. Olmos,Improving the flexibility of 5g heterogeneous networks by slicing, in: 2021 IEEE International Mediter-ranean Conference on Communications and Networking (MeditCom), IEEE, 2021, pp. 65-69.

[99]

A.H. Fakhteh, V. Sattari-Naeini, H.R. Naji,Increasing the network control abil-ity and flexibility in incremental switch deployment for hybrid software-defined networks, in: 2019 9th International Conference on Computer and Knowledge En-gineering (ICCKE), IEEE, 2019, pp. 263-268.

[100]

C. Ren, L. Liu, H. Zhang, Multimodal interference compatible passive uav net-work based on location-aware flexibility, IEEE Wirel. Commun. Lett. 12 (4) (2023) 640-643.

[101]

Z. Li, X. Yang, C. Wang, K. Ma, C. Jiang, Crowd-learning: a behavior-based verifi-cation method in software-defined vehicular networks with mec framework, IEEE Int. Things J. 9 (2) (2021) 1622-1639.

[102]

K. Lei, G. Lin, M. Zhang, K. Li, Q. Li, X. Jing, P. Wang, Measuring the consistency between data and control plane in sdn, IEEE/ACM Trans. Netw. 31 (2) (2022) 511-525.

[103]

M. Di Renzo, A. Zappone, M. Debbah, M.-S. Alouini, C. Yuen, J. De Rosny, S. Tretyakov, Smart radio environments empowered by reconfigurable intelligent sur-faces: how it works, state of research, and the road ahead, IEEE J. Sel. Areas Commun. 38 (11) (2020) 2450-2525.

AI Summary AI Mindmap
PDF

986

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/