SEAttention-residual based channel estimation for mmWave massive MIMO systems in IoV scenarios

Junhui Zhao , Ruixing Ren , Yao Wu , Qingmiao Zhang , Wei Xu , Dongming Wang , Lisheng Fan

›› 2025, Vol. 11 ›› Issue (3) : 778 -786.

PDF
›› 2025, Vol. 11 ›› Issue (3) : 778 -786. DOI: 10.1016/j.dcan.2024.04.005
Original article

SEAttention-residual based channel estimation for mmWave massive MIMO systems in IoV scenarios

Author information +
History +
PDF

Abstract

To improve the accuracy and efficiency of time-varying channels estimation algorithms for millimeter Wave (mmWave) massive Multiple-Input Multiple-Output (MIMO) systems in Internet of Vehicles (IoV) scenarios, the paper proposes a deep learning (DL) algorithm, Squeeze-and-Excitation Attention Residual Network (SEARNet), which integrates Squeeze-and-Excitation Attention (SEAttention) mechanism and residual module. Specifically, SEARNet considers the channel information as an image matrix, and embeds a SEAttention module in residual module to construct the SEAttention-Residual block. Through a data-driven approach, SEARNet can effectively extract key information from the channel matrix using the SEAttention mechanism, thereby reducing noise interference and estimating the channel in an accurate and efficient manner. The simulation results show that compared to two traditional and two DL channel estimation algorithms, the proposed SEARNet can achieve a maximum reduction in normalized mean square error (NMSE) of 97.66% and 84.49% at SNR of -10 dB, 78.18% at SNR of 5 dB, and 43.51% at SNR of 10 dB, respectively.

Keywords

mmWave massive MIMO / Internet of vehicles / Channel estimation / Squeeze-and-excitation attention / Residual learning

Cite this article

Download citation ▾
Junhui Zhao, Ruixing Ren, Yao Wu, Qingmiao Zhang, Wei Xu, Dongming Wang, Lisheng Fan. SEAttention-residual based channel estimation for mmWave massive MIMO systems in IoV scenarios. , 2025, 11(3): 778-786 DOI:10.1016/j.dcan.2024.04.005

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Junhui Zhao: Writing - review & editing, Supervision, Project administration, Funding acquisition. Ruixing Ren: Writing - review & editing, Writing - original draft. Yao Wu: Writing - original draft. Qingmiao Zhang: Supervision. Wei Xu: Supervision. Dongming Wang: Supervision. Lisheng Fan: Supervision.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grants U2001213 and 62261024, in part by National Key Research and Development Project under Grant 2020YFB1807204, and in part by Key Laboratory of Universal Wireless Communications (BUPT), Ministry of Education under Grant KFKT-2022101.

References

[1]

J. Zhao, S. Ni, L. Yang, Z. Zhang, Y. Gong, X. You, Multiband cooperation for 5G HetNets: a promising network paradigm, IEEE Veh. Technol. Mag. 14 (4) (2019) 85-93.

[2]

J. Zhao, J. Liu, L. Yang, B. Ai, S. Ni,Future 5G-oriented system for urban rail transit: opportunities and challenges, China Commun. 18 (2) (2021) 1-12.

[3]

K.I. Moharm, E.F. Zidane, M.M. El-Mahdy, S. El-Tantawy, Big data in its: concept, case studies, opportunities, and challenges, IEEE Trans. Intell. Transp. 20 (8) (2019) 3189-3194.

[4]

J. Zhao, X. Sun, Q. Li, X. Ma, Edge caching and computation management for real-time internet of vehicles: an online and distributed approach, IEEE Trans. Intell. Transp. 22 (4) (2021) 2183-2197.

[5]

O. Elijah, C.Y. Leow, T.A. Rahman, S. Nunoo, S.Z. Iliya,A comprehensive survey of pilot contamination in massive MIMO-5G system, IEEE Commun. Surv. Tutor. 18 (2) (2016) 905-923.

[6]

L. Lu, G.Y. Li, A.L. Swindlehurst, A. Ashikhmin, R. Zhang, An overview of mas-sive MIMO: benefits and challenges, IEEE J. Sel. Top. Signal Process. 8 (5) (2014) 742-758.

[7]

Y. Guo, R. Zhao, S. Lai, L. Fan, X. Lei, G.K. Karagiannidis, Distributed machine learn-ing for multiuser mobile edge computing systems, IEEE J. Sel. Top. Signal Process. 16 (3) (2022) 460-473.

[8]

S. Tang, L. Chen, K. He, J. Xia, L. Fan, A. Nallanathan, Computational intelligence and deep learning for next-generation edge-enabled industrial IoT, IEEE Trans. Netw. Sci. Eng. 10 (5) (2022) 2881-2893.

[9]

K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770-778.

[10]

J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in: 2018 IEEE/CVF Con-ference on Computer Vision and Pattern Recognition, 2018, pp. 7132-7141.

[11]

H. Yin, D. Gesbert, M. Filippou, Y. Liu, A coordinated approach to channel esti-mation in large-scale multiple-antenna systems, IEEE J. Sel. Areas Commun. 31 (2) (2013) 264-273.

[12]

A.L. Swindlehurst, E. Ayanoglu, P. Heydari, F. Capolino, Millimeter-wave massive MIMO: the next wireless revolution?, IEEE Commun. Mag. 52 (9) (2014) 56-62.

[13]

Y. Liu, Z. Tan, H. Hu, L.J. Cimini, G.Y. Li, Channel estimation for OFDM, IEEE Commun. Surv. Tutor. 16 (4) (2014) 1891-1908.

[14]

X. Lu, Y. Lu, J. Xu, G. Lin,Least square channel estimation for MIMO-OFDM system, in:2009 5th International Conference on Wireless Communications, Networking and Mobile Computing, 2009, pp. 1-4.

[15]

T.-M. Ma, Y.-S. Shi, Y.-G. Wang, A low complexity MMSE for OFDM systems over frequency-selective fading channels, IEEE Commun. Lett. 16 (3) (2012) 304-306.

[16]

J. Zhao, Q. Li, Y. Gong, K. Zhang, Computation offloading and resource allocation for cloud assisted mobile edge computing in vehicular networks, IEEE Trans. Veh. Technol. 68 (8) (2019) 7944-7956.

[17]

H. Ye, G.Y. Li, B.-H. Juang, Power of deep learning for channel estimation and signal detection in OFDM systems, IEEE Wirel. Commun. Lett. 7 (1) (2018) 114-117.

[18]

P. Dong, H. Zhang, G.Y. Li, I.S. Gaspar, N. NaderiAlizadeh, Deep CNN-based channel estimation for mmWave massive MIMO systems, IEEE J. Sel. Top. Signal Process. 13 (5) (2019) 989-1000.

[19]

M. Soltani, V. Pourahmadi, H. Sheikhzadeh, Pilot pattern design for deep learning-based channel estimation in OFDM systems, IEEE Wirel. Commun. Lett. 9 (12) (2020) 2173-2176.

[20]

M. Soltani, V. Pourahmadi, A. Mirzaei, H. Sheikhzadeh, Deep learning-based chan-nel estimation, IEEE Commun. Lett. 23 (4) (2019) 652-655.

[21]

W. Kim, Y. Ahn, J. Kim, B. Shim,Towards deep learning-aided wireless channel estimation and channel state information feedback for 6G, J. Commun. Netw. 25 (1) (2023) 61-75.

[22]

J. Zhao, Y. Wu, Q. Zhang, J. Liao, Two-stage channel estimation for mmWave mas-sive MIMO systems based on ResNet-UNet, IEEE Syst. J. 17 (3) (2023) 4291-4300.

[23]

Q. Li, Y. Gong, F. Meng, Z. Li, L. Miao, Z. Xu,Residual learning based channel estimation for OTFS system, in:2022 IEEE/CIC International Conference on Com-munications in China (ICCC Workshops), 2022, pp. 275-280.

[24]

L. Li, H. Chen, H.-H. Chang, L. Liu, Deep residual learning meets OFDM channel estimation, IEEE Wirel. Commun. Lett. 9 (5) (2020) 615-618.

[25]

M. Mehrabi, M. Mohammadkarimi, M. Ardakani, Y. Jing,A deep learning based channel estimation for high mobility vehicular communications, in:2020 Interna-tional Conference on Computing, Networking and Communications (ICNC), 2020, pp. 338-342.

[26]

J. Zhao, H. Mu, Q. Zhang, H. Zhang, Resnet-WGAN based end-to-end learning for IoV communication with unknown channels, IEEE Int. Things J. 10 (19) (2023) 17184-17192.

[27]

H. Liu, H. Kim, S. Moon, I. Hwang, Deep learning for channel estimation and tracking in vehicular to infrastructure communications, in: 2020 International Con-ference on Information and Communication Technology Convergence (ICTC), 2020, pp. 777-782.

[28]

R. Sattiraju, A. Weinand, H.D. Schotten,Channel estimation in C-V2X using deep learning, in: 2019 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), 2019, pp. 1-5.

[29]

Y. Liao, Y. Hua, Y. Cai, Deep learning based channel estimation algorithm for fast time-varying MIMO-OFDM systems, IEEE Commun. Lett. 24 (3) (2020) 572-576.

[30]

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Å. Kaiser, I. Polosukhin, Attention is all you need, in: Advances in Neural Information Processing Systems, 2017, pp. 5998-6008.

[31]

X. Li, A. Alkhateeb,Deep learning for direct hybrid precoding in millimeter wave massive MIMO systems, in:2019 53rd Asilomar Conference on Signals, Systems, and Computers, 2019, pp. 800-805.

[32]

Z. Gao, C. Hu, L. Dai, Z. Wang, Channel estimation for millimeter-wave massive MIMO with hybrid precoding over frequency-selective fading channels, IEEE Com-mun. Lett. 20 (6) (2016) 1259-1262.

[33]

O. Ronneberger, P. Fischer, T. Brox, U-Net: convolutional networks for biomedical image segmentation,in: Medical Image Computing and Computer-Assisted Interven-tion (MICCAI), Springer, 2015, pp. 234-241.

[34]

J. Lehtinen, J. Munkberg, J. Hasselgren, S. Laine, T. Karras, M. Aittala, T. Aila,Noise2noise: learning image restoration without clean data,in:Proceedings of the 35th International Conference on Machine Learning (ICML), 2018, pp. 2965-2974.

[35]

3GPP,Study on channel model for frequencies from 0.5 to 100 GHz, 3rd Gener. Partnership Project (3GPP) 38.

AI Summary AI Mindmap
PDF

543

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/