Light energy utilization and measurement methods in crop production

Zhaohong Lu, Jing Gao, Qi Wang, Zili Ning, Xianming Tan, Yi Lei, Jie Zhang, Jiaqi Zou, Lingxuan Wang, Chenyao Yang, Wenyu Yang, Feng Yang*

PDF
Crop and Environment ›› 2024, Vol. 3 ›› Issue (2) : 91-100. DOI: 10.1016/j.crope.2024.02.003

Light energy utilization and measurement methods in crop production

  • Zhaohong Lu, Jing Gao, Qi Wang, Zili Ning, Xianming Tan, Yi Lei, Jie Zhang, Jiaqi Zou, Lingxuan Wang, Chenyao Yang, Wenyu Yang, Feng Yang*
Author information +
History +

Abstract

Efficient solar energy utilization is a crucial determinant of crop yield formation. Moreover, various planting methods have dissimilar impacts on crop solar energy utilization and its measurement methods. This study examined the differences in solar energy utilization between monoculture and intercropping by considering density configuration, plant type arrangement, timing schedule, and spatial layout. We further evaluated the traditional methodologies versus remote sensing technology for solar energy measurements and described the differences in calculation methods for monoculture and intercropping, drawing from the photosynthesis model. Additionally, we discussed the potential advantages and limitations of employing remote sensing technology for the monitoring and prediction of solar energy utilization in field crops.

Keywords

Crop production / Intercropping / Light use efficiency / Monoculture / Photosynthesis model / Remote sensing

Cite this article

Download citation ▾
Zhaohong Lu, Jing Gao, Qi Wang, Zili Ning, Xianming Tan, Yi Lei, Jie Zhang, Jiaqi Zou, Lingxuan Wang, Chenyao Yang, Wenyu Yang, Feng Yang. Light energy utilization and measurement methods in crop production. Crop and Environment, 2024, 3(2): 91‒100 https://doi.org/10.1016/j.crope.2024.02.003

References

[1] Awal M.A., Koshi H., Ikeda T., 2006. Radiation interception and use by maize/peanut intercrop canopy. Agric. For. Meteorol. 139, 74-83.
[2] Barker C.R., Cocuron J.C., Alonso A.P., Niyogi K.K., 2023. Time-resolved systems analysis of the induction of high photosynthetic capacity in Arabidopsis during acclimation to high light. New Phytol. 240, 2335-2352.
[3] Barker S., Dennett M.D., 2013. Effect of density, cultivar and irrigation on spring sown monocrops and intercrops of wheat(Triticum aestivum L.) and faba beans (Vicia faba L.). Eur. J. Agron. 51, 108-116.
[4] Barton C.V.M., North P.R.J., 2001. Remote sensing of canopy light use efficiency using the photochemical reflectance index. Remote Sens. Environ. 78, 264-273.
[5] Batchelor W.D.,1997. Modelling potential crop growth processes. Agric. Syst. 54, 127-129.
[6] Chen J.H., Zhang Q., Chen B., Zhang Y.G., Ma L., Li Z.H., Zhang X.K., Wu Y.F., Wang S.Q., Mickler R.A., 2020. Evaluating multi-angle photochemical reflectance index and solar-induced fluorescence for the estimation of gross primary production in maize. Rem. Sens. 12, 2812.
[7] Chen S., Yin M., Zheng X., Liu S., Chu G., Xu C., Wang D., Zhang X., 2019. Effect of dense planting of hybrid rice on grain yield and solar radiation use in southeastern China. Agron. J. 111, 1229-1238.
[8] Chen X., Cui Z., Fan M., Vitousek P., Zhao M., Ma W., Wang Z., Zhang W., Yan X., Yang J., Deng X., Gao Q., Zhang Q., Guo S., Ren J., Li S., Ye Y., Wang Z., Huang J., Tang Q., Sun Y., Peng X., Zhang J., He M., Zhu Y., Xue J., Wang G., Wu L., An N., Wu L., Ma L., Zhang W., Zhang F., 2014. Producing more grain with lower environmental costs. Nature 514, 486-489.
[9] Coll L., Cerrudo A., Rizzalli R., Monzon J.P., Andrade F.H., 2012. Capture and use of water and radiation in summer intercrops in the south-east Pampas of Argentina. Field Crops Res. 134, 105-113.
[10] De Pury D.G.G., Farquhar G.D., 1997. Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant Cell Environ. 20, 537-557.
[11] Deng F., Li B., Yuan Y., He C., Zhou X., Li Q., Zhu Y., Huang X., He Y., Ai X., Tao Y., Zhou W., Wang L., Cheng H., Chen Y., Wang M., Ren W., 2022. Increasing the number of seedlings per hill with reduced number of hills improves rice grain quality by optimizing canopy structure and light utilization under shading stress. Field Crops Res. 287, 108668.
[12] Dingkuhn M., Laza M.R.C., Kumar U., Mendez K.S., Collard B., Jagadish K., Singh R.K., Padolina T., Malabayabas M., Torres E., Rebolledo M.C., Manneh B., Sow A., 2016. Improving yield potential of tropical rice: achieved levels and perspectives through improved ideotypes. Field Crops Res. 182, 43-59.
[13] Du X., Chen B., Shen T., Zhang Y., Zhou Z., 2015. Effect of cropping system on radiation use efficiency in double-cropped wheat-cotton. Field Crops Res. 170, 21-31.
[14] Evers J.B., Vos J., Yin X., Romero P., van der Putten P.E.L., Struik P.C., 2010. Simulation of wheat growth and development based on organ-level photosynthesis and assimilate allocation. J. Exp. Bot. 61, 2203-2216.
[15] Filella I., Peñuelas J., Llorens L., Estiarte M., 2004. Reflectance assessment of seasonal and annual changes in biomass and CO2 uptake of a Mediterranean shrubland submitted to experimental warming and drought. Remote Sens. Environ. 90, 308-318.
[16] Gamon J.A., Berry J.A., 2012. Facultative and constitutive pigment effects on the Photochemical Reflectance Index (PRI) in sun and shade conifer needles. Isr. J. Plant Sci. 60, 85-95.
[17] Gamon J.A., Peñuelas J., Field C.B., 1992. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ. 41, 35-44.
[18] Gamon J.A., Serrano L., Surfus J., 1997. The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia 112, 492-501.
[19] Gamon J.A., Surfus J.S., 1999. Assessing leaf pigment content and activity with a reflectometer. New Phytol. 143, 105-117.
[20] Gao Y., Duan A., Qiu X., Sun J., Zhang J., Liu H., Wang H., 2010. Distribution and use efficiency of photosynthetically active radiation in strip intercropping of maize and soybean. Agron. J. 102, 952-958.
[21] Ghaffarzadeh M., Préchac F.G., Cruse R.M., 1994. Grain yield response of corn, soybean, and oat grown in a strip intercropping system. Am. J. Altern. Agric. 9, 171-177.
[22] Gitelson A.A., Gamon J.A., Solovchenko A., 2017. Multiple drivers of seasonal change in PRI: implications for photosynthesis 2. Stand level. Remote Sens. Environ. 190, 198-206.
[23] Gou F., van Ittersum M.K., Simon E., Leffelaar P.A., van der Putten P.E.L., Zhang L., van der Werf W., 2017a. Intercropping wheat and maize increases total radiation interception and wheat RUE but lowers maize RUE. Eur. J. Agron. 84, 125-139.
[24] Gou F., Yin W., Hong Y., van der Werf W., Chai Q., Heerink N., van Ittersum M.K., 2017b. On yield gaps and yield gains in intercropping: opportunities for increasing grain production in northwest China. Agric. Syst. 151, 96-105.
[25] Guanter L., Frankenberg C., Dudhia A., Lewis P.E., Gómez-Dans J., Kuze A., Suto H., Grainger R.G., 2012. Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements. Remote Sens. Environ. 121, 236-251.
[26] Guanter L., Rossini M., Colombo R., Meroni M., Frankenberg C., Lee J.E., Joiner J., 2013. Using field spectroscopy to assess the potential of statistical approaches for the retrieval of sun-induced chlorophyll fluorescence from ground and space. Remote Sens. Environ. 133, 52-61.
[27] Guo J., Trotter C.M., 2004. Estimating photosynthetic light-use efficiency using the photochemical reflectance index: variations among species. Funct. Plant Biol. 31, 255-265.
[28] He M., Ju W., Zhou Y., Chen J., He H., Wang S., Wang H., Guan D., Yan J., Li Y., Hao Y., Zhao F., 2013. Development of a two-leaf light use efficiency model for improving the calculation of terrestrial gross primary productivity. Agric. For. Meteorol. 173, 28-39.
[29] He M., Kimball J.S., Running S., Ballantyne A., Guan K., Huemmrich F., 2016. Satellite detection of soil moisture related water stress impacts on ecosystem productivity using the MODIS-based photochemical reflectance index. Remote Sens. Environ. 186, 173-183.
[30] Hemmerling R., Kniemeyer O., Lanwert D., Kurth W., Buck-Sorlin G., 2008. The rulebased language XL and the modelling environment GroIMP illustrated with simulated tree competition. Funct. Plant Biol. 35, 739-750.
[31] Hilker T., Coops N.C., Hall F.G., Black T.A., Wulder M.A., Nesic Z., Krishnan P., 2008. Separating physiologically and directionally induced changes in PRI using BRDF models. Remote Sens. Environ. 112, 2777-2788.
[32] Hu L.Y., Ding Y.F., 2008. Crop Cultivation, first ed. Higher Education Press, Beijing, China (in Chinese).
[33] Jones M.P., Dingkuhn M., Aluko G.K., Semon M., 1997. Interspecific Oryza Sativa L. X O. Glaberrima Steud. progenies in upland rice improvement. Euphytica 94, 237-246.
[34] Katsura K., Okami M., Mizunuma H., Kato Y., 2010. Radiation use efficiency, N accumulation and biomass production of high-yielding rice in aerobic culture. Field Crops Res. 117, 81-89.
[35] Kováč D., Veselá B., Klem K., Večeřová K., Kmecová Z.M., Peñuelas J., Urban O., 2020. Correction of PRI for carotenoid pigment pools improves photosynthesis estimation across different irradiance and temperature conditions. Remote Sens. Environ. 244, 111834.
[36] Li S., van der Werf W., Zhu J., Guo Y., Li B., Ma Y., Evers J.B., 2021. Estimating the contribution of plant traits to light partitioning in simultaneous maize/soybean intercropping. J. Exp. Bot. 72, 3630-3646.
[37] Lindquist J.L., Arkebauer T.J., Walters D.T., Cassman K.G., Dobermann A., 2005. Maize radiation use efficiency under optimal growth conditions. Agron. J. 97, 72-78.
[38] Liu F., Song Q., Zhao J., Mao L., Bu H., Hu Y., Zhu X., 2021. Canopy occupation volume as an indicator of canopy photosynthetic capacity. New Phytol. 232, 941-956.
[39] Liu L.Y., Guan L.L., Liu X.J., 2017. Directly estimating diurnal changes in GPP for C3 and C4 crops using far-red sun-induced chlorophyll fluorescence. Agric. For. Meteorol. 232, 1-9.
[40] Liu X., Rahman T., Yang F., Song C., Yong T., Liu J., Zhang C., Yang W., 2017. PAR interception and utilization in different maize and soybean intercropping patterns. PLoS One 12, e0169218.
[41] Liu Z., Gao J., Zhao S.Y., Sha Y., Huang Y.W., Hao Z.H., Ke L.H., Chen F.J., Yuan L.X., Mi G.H., 2023. Nitrogen responsiveness of leaf growth, radiation use efficiency and grain yield of maize(Zea Mays L.) in Northeast China. Field Crops Res. 291, 108806.
[42] Lobell D.B., Cassman K.G., Field C.B., 2009. Crop yield gaps: their importance, magnitudes, and causes. Annu. Rev. Environ. Resour. 34, 179-204.
[43] Magney T.S., Vierling L.A., Eitel J.U.H., Huggins D.R., Garrity S.R., 2016. Response of high frequency Photochemical Reflectance Index (PRI) measurements to environmental conditions in wheat. Remote Sens. Environ. 173, 84-97.
[44] Maurino V.G., Peterhansel C., 2010. Photorespiration: current status and approaches for metabolic engineering. Curr. Opin. Plant Biol. 13, 248-255.
[45] Middleton E.M., Cheng Y., Hilker T., Black T.A., Krishnan P., Coops N.C., Huemmrich K.F., 2009. Linking foliage spectral responses to canopy-level ecosystem photosynthetic light-use efficiency at a Douglas-fir forest in Canada. Can. J. Remote Sens. 35, 166-188.
[46] Middleton E.M., Huemmrich K.F., Landis D.R., Black T.A., Barr A.G., McCaughey J.H., 2016. Photosynthetic efficiency of northern forest ecosystems using a MODIS-derived Photochemical Reflectance Index (PRI). Remote Sens. Environ. 187, 345-366.
[47] Mohammed G.H., Colombo R., Middleton E.M., Rascher U., van der Tol C., Nedbal L., Goulas Y., Pérez-Priego O., Damm A., Meroni M., Joiner J., Cogliati S., Verhoef W., Malenovský Z., Gastellu-Etchegorry J., Miller J.R., Guanter L., Moreno J., Moya I., Berry J.A., Frankenberg C., Zarco-Tejada P.J., 2019. Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress. Remote Sens. Environ. 231, 111177.
[48] Monteith J.,1972. Solar radiation and productivity in tropical ecosystems. J. Appl. Ecol. 9, 747-766.
[49] Munz S., Feike T., Chen Q., Claupein W., Graeff-H€onninger S., 2014. Understanding interactions between cropping pattern, maize cultivar and the local environment in strip-intercropping systems. Agric. For. Meteorol. 195, 152-164.
[50] Nakaji T., Oguma H., Fujinuma Y., 2006. Seasonal changes in the relationship between photochemical reflectance index and photosynthetic light use efficiency of Japanese larch needles. Int. J. Remote Sens. 27, 493-509.
[51] Nichol C.J., Lloyd J., Shibistova O., Arneth A., R€oser C., Knohl A., Matsubara S., Grace J., 2016. Remote sensing of photosynthetic-light-use efficiency of a Siberian boreal forest. TelluS Ser. B-Chem. Phys. Meteorol. 54, 677-687.
[52] Nyawade S.O., Karanja N.N., Gachene C.K.K., Gitari H.I., Schulte-Geldermann E., Parker M.L., 2019. Intercropping optimizes soil temperature and increases crop water productivity and radiation use efficiency of rainfed potato. Am. J. Potato Res. 96, 457-471.
[53] Ouyang Y.N., Zeng R.F., Zhan L., Zhang G.P., 2011. Characterization of growth and light utilization for rice genotypes with different tiller angles. Agric. Sci. China 10, 1701-1709.
[54] Paul-Limoges E., Damm A., Hueni A., Liebisch F., Eugster W., Schaepman M.E., Buchmann N., 2018. Effect of environmental conditions on sun-induced fluorescence in a mixed forest and a cropland. Remote Sens. Environ. 219, 310-323.
[55] Penuelas J., Filella I., Gamon J.A., 1995. Assessment of photosynthetic radiation-use efficiency with spectral reflectance. New Phytol. 131, 291-296.
[56] Penuelas J., Llusia J., Pinol J., Filella I., 1997. Photochemical reflectance index and leaf photosynthetic radiation-use-efficiency assessment in Mediterranean trees. Int. J. Rem. Sens. 18, 2863-2868.
[57] Pinto F., Celsti M., Acebron K., Alberti G., Cogliati S., Colombo R., Juszczak R., Matsubara S., Miglietta F., Palombo A., Panigada C., Pignatti S., Rossini M., Sakowska M., Schickling A., Schüttemeyer A., Strózecki M., Tudoroiu M., Rascher U., 2020. Dynamics of sun-induced chlorophyll fluorescence and reflectance to detect stress-induced variations in canopy photosynthesis. Plant Cell Environ. 43, 1637-1654.
[58] Porcar-Castell A., Tyystj€arvi E., Atherton J., van der Tol C., Flexas J., Pfündel E.E., Moreno J., Frankenberg C., Berry J.A., 2014. Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges. J. Exp. Bot. 65, 4065-4095.
[59] Potter C.S., Randerson J.T., Field C.B., Matson P.A., Vitousek P.M., Mooney H.A., Klooster S.A., 1993. Terrestrial ecosystem production: a process model based on global satellite and surface data. Glob. Biogeochem. Cycle 7, 811-841.
[60] Raza M.A., Cui L., Khan I., Din A.M.U., Chen G., Ansar M., Ahmed M., Ahmad S., Manaf A., Titriku J.K., Shah G.A., Yang F., Yang W., 2021. Compact maize canopy improves radiation use efficiency and grain yield of maize/soybean relay intercropping system. Environ. Sci. Pollut. Res. 28, 41135-41148.
[61] Reynolds M.P., van Ginkel M., Ribaut J., 2000. Avenues for genetic modification of radiation use efficiency in wheat. J. Exp. Bot. 51, 459-473.
[62] Rhaman M., Awal M., Shelley I., 2016. Interception and use of solar radiation in mustard/grass pea intercropping. Int. J. Plant Soil Sci. 12, 1-13.
[63] Rodrigo V.H.L., Stirling C.M., Teklehaimanot Z., Nugawela A., 2001. Intercropping with banana to improve fractional interception and radiation-use efficiency of immature rubber plantations. Field Crops Res. 69, 237-249.
[64] Running S.W., Nemani R.R., Heinsch F.A., Zhao M., Hashimoto H., 2004. A continuous satellite-derived measure of global terrestrial primary production. Bioscience 54, 547-560.
[65] Sakamoto T., Morinaka Y., Ohnishi T., Sunohara H., Matsuoka M., 2006. Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nat. Biotechnol. 24, 105-109.
[66] Sands P.,1995. Modelling canopy production. II. From single-leaf photosynthesis parameters to daily canopy photosynthesis. Funct. Plant Biol. 22, 603-614.
[67] Song Q., Zhang G., Zhu X.G., 2013. Optimal crop canopy architecture to maximize canopy photosynthetic CO2 uptake under elevated CO2 - a theoretical study using a mechanistic model of canopy photosynthesis. Funct. Plant Biol. 40, 108-124.
[68] Tester M., Langridge P., 2010. Breeding technologies to increase crop production in a changing world. Science 327, 818-822.
[69] Tian X.Y., Engel B.A., Qian H.Y., Hua E., Sun S.K., Wang Y.B., 2021. Will reaching the maximum achievable yield potential meet future global food demand? J. Clean. Prod. 294, 126285.
[70] Townsend A.J., Retkute R., Chinnathambi K., Randall J.W.P., Foulkes J., Carmo-Silva E., Murchie E.H., 2018. Suboptimal acclimation of photosynthesis to light in wheat canopies. Plant Physiol. 176, 1233-1246.
[71] Tsubo M., Walker S., Mukhala E., 2001. Comparisons of radiation use efficiency of mono-/inter-cropping systems with different row orientations. Field Crops Res. 71, 17-29.
[72] Turner D.P., Ritts W.D., Styles J.M., Yang Z., Cohen W.B., Thornton P.E., 2006. A diagnostic carbon flux model to monitor the effects of disturbance and interannual variation in climate on regional NEP. TelluS Ser. B-Chem. Phys. Meteorol. 58, 476-490.
[73] Veroustraete F., Sabbe H., Eerens H., 2002. Estimation of carbon mass fluxes over Europe using the C-Fix model and Euroflux data. Remote Sens. Environ. 83, 376-399.
[74] Vos J., Evers J.B., Buck-Sorlin G.H., Andrieu B., Chelle M., de Visser P.H.B., 2010. Functional-structural plant modelling: a new versatile tool in crop science. J. Exp. Bot. 61, 2101-2115.
[75] Wallace J.S.,1997. Evaporation and radiation interception by neighbouring plants. Q. J. R. Meteorol. Soc. 123, 1885-1905.
[76] Wallace J.S., Batchelor C.H., Dabeesing D.N., Teeluck M., Soopramanien G.C., 1991. A comparison of the light interception and water use of plant and first ratoon sugar cane intercropped with maize. Agric. For. Meteorol. 57, 85-105.
[77] Wang Q., Zhang D., Zhang L., Han S., van der Werf W., Evers J.B., Su Z., Anten N.P.R., 2017. Spatial configuration drives complementary capture of light of the understory cotton in young jujube plantations. Field Crops Res. 213, 21-28.
[78] Wang X.P., Chen J.M., Ju W.M., 2020. Photochemical reflectance index (PRI) can be used to improve the relationship between gross primary productivity (GPP) and suninduced chlorophyll fluorescence (SIF). Remote Sens. Environ. 246, 111888.
[79] Wang Z., Zhao X., Wu P., Chen X., 2015a. Effects of water limitation on yield advantage and water use in wheat (Triticum aestivum L.)/maize (Zea mays L.) strip intercropping. Eur. J. Agron. 71, 149-159.
[80] Wang Z., Zhao X., Wu P., He J., Chen X., Gao Y., Cao X., 2015b. Radiation interception and utilization by wheat/maize strip intercropping systems. Agric. For. Meteorol. 204, 58-66.
[81] Wu A., Doherty A., Farquhar G.D., Hammer G.L., 2018. Simulating daily field crop canopy photosynthesis: an integrated software package. Funct. Plant Biol. 45, 362-377.
[82] Wu A., Song Y., van Oosterom E.J., Hammer G.L., 2016. Connecting biochemical photosynthesis models with crop models to support crop improvement. Front. Plant Sci. 7, 207087.
[83] Wu C., Huang W., Yang Q., Xie Q., 2015. Improved estimation of light use efficiency by removal of canopy structural effect from the photochemical reflectance index (PRI). Agric. Ecosyst. Environ. 199, 333-338.
[84] Xiao X., Hollinger D., Aber J., Goltz M., Davidson E.A., Zhang Q., Moore B., 2003. Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sens. Environ. 89, 519-534.
[85] Xu C., Zhao H., Zhang P., Wang Y., Huang S., Meng Q., Wang P., 2018. Delaying wheat seeding time and maize harvest improved water use efficiency in a warm temperature continental monsoon climate. Agron. J. 110, 1420-1429.
[86] Xu J.H., Xie J.X., Xiong R.Y., Guo L., Tan X.M., Zeng Y.J., Shi Q.H., Pan X.H., Zeng Y.H., 2021. Effects of sowing date on temperature and light resource utilization, yield and quality formation of double-season late indica rice in south China. China Rice 27, 115-120 (In Chinese with English abstract).
[87] Yang F., Huang S., Gao R.C., Liu W.G., Yong T.W., Wang X.C., Wu X.L., Yang W.Y., 2014. Growth of soybean seedlings in relay strip intercropping systems in relation to light quantity and red:far-red ratio. Field Crops Res. 155, 245-253.
[88] Yang X., Tang J.W., Mustard J.F., Lee J.E., Rossini M., Joiner J., Munger J.W., Ari K., Andrew D.R., 2015. Solar-induced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest. Geophys. Res. Lett. 421, 2977-2987.
[89] Yu Y., Stomph T., Makowski D., van der Werf W., 2015. Temporal niche differentiation increases the land equivalent ratio of annual intercrops: a meta-analysis. Field Crops Res. 184, 133-144.
[90] Yuan W., Liu S., Zhou G., Zhou G., Tieszen L.L., Baldocchi D., Bernhofer C., Gholz H., Goldstein A.H., Goulden M.L., 2007. Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes. Agric. For. Meteorol. 143, 189-207.
[91] Zhang D., Du G., Sun Z., Bai W., Wang Q., Feng L., Zheng J., Zhang Z., Liu Y., Yang S., Yang N., Feng C., Cai Q., Evers J.B., van der Werf W., Zhang L., 2018. Agroforestry enables high efficiency of light capture, photosynthesis and dry matter production in a semi-arid climate. Eur. J. Agron. 94, 1-11.
[92] Zhang L., van der Werf W., Bastiaans L., Zhang S., Li B., Spiertz J.H.J., 2007. Light interception and utilization in relay intercrops ofwheat and cotton. Field Crops Res. 107, 29-42.
[93] Zhang Q., Middleton E.M., Cheng Y., Huemmrich K.F., Cook B.D., Corp L.A., Kustas W.P., Russ A.L., Prueger J.H., Yao T., 2016. Integrating chlorophyll fAPAR and nadir photochemical reflectance index from EO-1/Hyperion to predict cornfield daily gross primary production. Remote Sens. Environ. 186, 311-321.
[94] Zhang W., Yan L.L., Fu Z.Q., Xu Y., Guo H.J., Zhou M.Y., Long P., 2023a. Effects of sowing date on yield of double cropping rice and utilization efficiency of light and heat energy in Hunan Province. Sci. Agric. Sin. 56, 31-45 (In Chinese with English abstract).
[95] Zhang W.P., Li Z.X., Gao S.N., Yang H., Xu H.S., Yang X., Fan H.X., Su Y., Surigaoge, Weiner J., Fornara D., Li L., 2023b. Resistance vs. surrender: different responses of functional traits of soybean and peanut to intercropping with maize. Field Crops Res. 291, 108779.
[96] Zhang W.Y., Tang L., Yang X., Liu L.L., Cao W.X., Zhu Y., 2015. A simulation model for predicting canopy structure and light distribution in wheat. Eur. J. Agron. 67, 1-11.
Funding
* E-mail address: f.yang@sicau.edu.cn (F. Yang).
PDF

Accesses

Citations

Detail

Sections
Recommended

/