Exploring the responses of crop photosynthesis to CO2 elevation at the molecular, physiological, and morphological levels toward increasing crop production

Daisuke Sugiuraa, Yin Wangb, Masaru Konoc, Yusuke Mizokamid,*

PDF
Crop and Environment ›› 2024, Vol. 3 ›› Issue (2) : 75-83. DOI: 10.1016/j.crope.2023.11.006

Exploring the responses of crop photosynthesis to CO2 elevation at the molecular, physiological, and morphological levels toward increasing crop production

  • Daisuke Sugiuraa, Yin Wangb, Masaru Konoc, Yusuke Mizokamid,*
Author information +
History +

Abstract

Exploring the impact of elevated CO2 on photosynthesis is vital for understanding plant responses to climate change. In C3 plants, elevated CO2 concentrations generally enhance CO2 assimilation by increasing chloroplast CO2 concentration. However, the underlying mechanisms are complex since photosynthesis involves multiple physiological processes operating at different time scales and varying among plant species. In this review, we focused on the responses of key photosynthetic processes in crop, including CO2 diffusion conductances such as stomatal conductance (gs), mesophyll conductance (gm), photochemical reactions, the Calvin-Benson cycle, and related metabolic pathways. Short-term exposure to elevated CO2 often decreases gs and gm while increasing the electron transport rate. However, long-term exposure to elevated CO2 can decrease photosynthetic capacity due to coordinated downregulation of multiple processes, particularly when the sink‒source ratio declines. To enhance plant productivity under elevated CO2, it is crucial to maintain or enhance sink activity and understand the CO2 response mechanisms at the molecular, physiological, and morphological levels. This review provides an update on the short- and long-term responses of gs, gm, electron transport system, and carbon assimilation metabolism to elevated CO2. Furthermore, it offers a perspective on improving crop production in the future with elevated CO2 levels.

Keywords

Carbon assimilation metabolism / Electron transport / Elevated CO2 concentration / Mesophyll conductance / Sink‒source balance / Stomatal conductance

Cite this article

Download citation ▾
Daisuke Sugiura, Yin Wang, Masaru Kono, Yusuke Mizokami. Exploring the responses of crop photosynthesis to CO2 elevation at the molecular, physiological, and morphological levels toward increasing crop production. Crop and Environment, 2024, 3(2): 75‒83 https://doi.org/10.1016/j.crope.2023.11.006

References

[1] AbdElgawad H., Farfan-Vignolo E.R., de Vos D., Asard H., 2015. Elevated CO2 mitigates drought and temperature-induced oxidative stress differently in grasses and legumes. Plant Sci. 231, 1-10.
[2] Abdelhakim L.O.A., Mendanha T., Palma C.F.F., Vrobel O., Štefelová N., Zeljkovič S.Č., Tarkowski P., De Diego N., Wollenweber B., Rosenqvist E., Ottosen C.O., 2022a. Elevated CO2 improves the physiology but not the final yield in spring wheat genotypes subjected to heat and drought stress during anthesis. Front. Plant Sci. 13, 824476.
[3] Abdelhakim L.O.A., Zhou R., Ottosen C.O., 2022b. Physiological responses of plants to combined drought and heat under elevated CO2. Agronomy 12, 2526.
[4] Ainsworth E.A., Long S.P., 2005. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 165, 351-372.
[5] Ainsworth E.A., Long S.P., 2020. 30 years of free-air carbon dioxide enrichment (FACE): what have we learned about future crop productivity and its potential for adaptation? Glob. Change Biol. 27, 27-49.
[6] Ainsworth E.A., Rogers A., 2007. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ. 30, 258-270.
[7] Ainsworth E.A., Rogers A., Nelson R., Long S.P., 2004. Testing the “source-sink” hypothesis of down-regulation of photosynthesis in elevated [CO2] in the field with single gene substitutions in Glycine max. Agric. For. Meteorol. 122, 85-94.
[8] Beechey-Gradwell Z., Cooney L., Winichayakul S., Andrews M., Hea S.Y., Crowther T., Roberts N., 2020. Storing carbon in leaf lipid sinks enhances perennial ryegrass carbon capture especially under high N and elevated CO2. J. Exp. Bot. 71, 2351-2361.
[9] Bernacchi C.J., Morgan P.B., Ort D.R., Long S.P., 2005. The growth of soybean under free air [CO2] enrichment (FACE) stimulates photosynthesis while decreasing in vivo Rubisco capacity. Planta 220, 434-446.
[10] Brodribb T.J., McAdam S.A., Jordan G.J., Feild T.S., 2009. Evolution of stomatal responsiveness to CO2 and optimization of water-use efficiency among land plants. New Phytol. 183, 839-847.
[11] Bunce J.A.,2010. Variable responses of mesophyll conductance to substomatal carbon dioxide concentration in common bean and soybean. Photosynthetica 48, 507-512.
[12] Burrows P.A., Sazanov L.A., Svab Z., Maliga P., Nixon P.J., 1998. Identification of a functional respiratory complex in chloroplasts through analysis of tobacco mutants containing disrupted plastid ndh genes. EMBO J. 17, 868-876.
[13] Chavan S.G., Duursma R.A., Tausz M., Ghannoum O., 2019. Elevated CO2 alleviates the negative impact of heat stress on wheat physiology but not on grain yield. J. Exp. Bot. 70, 6447-6459.
[14] Chen G.Y., Yong Z.H., Liao Y., Zhang D.Y., Chen Y., Zhang H.B., Chen J., Zhu J.G., Xu D.Q., 2005. Photosynthetic acclimation in rice leaves to free-air CO2 enrichment related to both ribulose-1,5-bisphosphate carboxylation limitation and ribulose-1,5-bisphosphate regeneration limitation. Plant Cell Physiol. 46, 1036-1045.
[15] Cheng S.H., Moore B.D., Seemann J.R., 1998. Effects of short- and long-term elevated CO2 on the expression of ribulose-1,5-bisphosphate carboxylase/oxygenase genes and carbohydrate accumulation in leaves of Arabidopsis thaliana(L.) Heynh. Plant Physiol. 116, 715-723.
[16] Cooney L.J., Beechey-Gradwell Z., Winichayakul S., Richardson K.A., Crowther T., Anderson P., Scott R.W., Bryan G., Roberts N.J., 2021. Changes in leaf-level nitrogen partitioning and mesophyll conductance deliver increased photosynthesis for Lolium perenne leaves engineered to accumulate lipid carbon sinks. Front. Plant Sci. 12, 641822.
[17] Crous K.Y., Campany C., López R., Cano F.J., Ellsworth D.S., 2020. Canopy position affects photosynthesis and anatomy in mature Eucalyptus trees in elevated CO2. Tree Physiol. 41, 206-222.
[18] Crous K.Y., Quentin A.G., Lin Y.S., Mendlyn B.E., Williams D.G., Barton C.V.M., Ellsworth D.S., 2013. Photosynthesis of temperate Eucalyptus globulus trees outside their native range has limited adjustment to elevated CO2 and climate warming. Glob. Change Biol. 19, 3790-3807.
[19] DalCorso G., Pesaresi P., Masiero S., Aseeva E., Schünemann D., Finazzi G., Joliot P., Barbato R., Leister D., 2008. A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis. Cell 132, 273-285.
[20] Darwin F.,1898. Observations on stomata. Nature 58, 212-213.
[21] Delucia E.H., Sasek T.W., Strain B.R., 1985. Photosynthetic inhibition after long-term exposure to elevated levels of atmospheric carbon dioxide. Photosynth. Res. 7, 175-184.
[22] DiMario R.J., Machingura M.C., Waldrop G.L., Moroney J.V., 2018. The many types of carbonic anhydrases in photosynthetic organisms. Plant Sci. 268, 11-17.
[23] Dong J., Gruda N., Lam S.K., Li X., Duan Z., 2018. Effects of elevated CO2 on nutritional quality of vegetables: a review. Front. Plant Sci. 9, 1-11.
[24] Douthe C., Dreyer E., Epron D., Warren C.R., 2011. Mesophyll conductance to CO2, assessed from online TDL-AS records of 13CO2 discrimination, displays small but significant short-term responses to CO2 and irradiance in Eucalyptus seedlings. J. Exp. Bot. 62, 5335-5346.
[25] Düring H.,2003. Stomatal and mesophyll conductances control CO2 transfer to chloroplasts in leaves of grapevine (Vitis vinifera L.). Vitis 42, 65-68.
[26] Engineer C.B., Ghassemian M., Anderson J.C., Peck S.C., Hu H.H., Schroeder J.I., 2014. Carbonic anhydrases, EPF2 and a novel protease mediate CO2 control of stomatal development. Nature 513, 246-250.
[27] Evans J.R., Kaldenhoff R., Genty B., Terashima I., 2009. Resistances along the CO2 diffusion pathway inside leaves. J. Exp. Bot. 60, 2235-2248.
[28] Fabre D., Dingkuhn M., Yin X., Clément-Vidal A., Roques S., Soutiras A., Luquet D., 2020. Genotypic variation in source and sink traits affects the response of photosynthesis and growth to elevated atmospheric CO2. Plant Cell Environ. 43, 579-593.
[29] Falcone D.L., Ogas J.P., Somerville C.R., 2004. Regulation of membrane fatty acid composition by temperature in mutants of Arabidopsis with alterations in membrane lipid composition. BMC Plant Biol. 4, 17.
[30] Flexas J., Barbour M.M., Brendel O., Cabrera H.M., Carriquí M., Díaz-Espejo A., Douthe C., Dreyer E., Ferrio J.P., Gago J., Gallé A., Galmés J., Kodama N., Medrano H., Niinemets Ü., Peguero-Pina J.J., Pou A., Ribas-Carbó M., Tomás M., Tosens T., Warren C.R., 2012. Mesophyll diffusion conductance to CO2: an unappreciated central player in photosynthesis. Plant Sci. 193-194, 70-84.
[31] Flexas J., Díaz-Espejo A., Conesa M.A., Coopman R.E., Douthe C., Gago J., Gallé A., Galmés J., Medrano H., Ribas-Carbo M., Tomás M., Niinemets Ü., 2015. Mesophyll conductance to CO2 and Rubisco as targets for improving intrinsic water use efficiency in C3 plants. Plant Cell Environ. 39, 965-982.
[32] Flexas J., Ortuno M.F., Ribas-Carbo M., Diaz-Espejo A., Florez-Sarasa I.D., Medrano H., 2007. Mesophyll conductance to CO2 in Arabidopsis thaliana. New Phytol. 175, 501-511.
[33] Flexas J., Ribas-Carbo M., Hanson D.T., Bota J., Otto B., Cifre J., McDowell N., Medrano H., Kaldenhoff R., 2006. Tobacco aquaporin NtAQP1 is involved in mesophyll conductance to CO2 in vivo. Plant J. 48, 427-439.
[34] Foyer C.H., Neukermans J., Queval G., Noctor G., Harbinson J., 2012. Photosynthetic control of electron transport and the regulation of gene expression. J. Exp. Bot. 63, 1637-1661.
[35] Fujita T., Noguchi K., Ozaki H., Terashima I., 2019. Confirmation of mesophyll signals controlling stomatal responses by a newly devised transplanting method. Funct. Plant Biol. 46, 467-481.
[36] Fujita T., Noguchi K., Terashima I., 2013. Apoplastic mesophyll signals induce rapid stomatal responses to CO2 in Commelina communis. New Phytol. 199, 395-406.
[37] Gesch R.W., Kang I.H., Gallo-Meagher M., Vu J.C.V., Boote K.J., Allen L.H., Bowes G., 2003. Rubisco expression in rice leaves is related to genotypic variation of photosynthesis under elevated growth CO2 and temperature. Plant Cell Environ. 26, 1941-1950.
[38] Hanba Y.T., Shibasaka M., Hayashi Y., Hayakawa T., Kasamo K., Terashima I., Katsuhara M., 2004. Overexpression of the barley aquaporin HvPIP2;1 increases internal CO2 conductance and CO2 assimilation in the leaves of transgenic rice plants. Plant Cell Physiol. 45, 521-529.
[39] Hasan M.K., Xing Q.F., Zhou C.Y., Wang K.X., Xu T., Yang P., Qi Z.Y., Shao S.J., Ahammed G.J., Zhou J., 2023. Melatonin mediates elevated carbon dioxide-induced photosynthesis and thermotolerance in tomato. J. Pineal Res. 74, e12858.
[40] Hashimoto-Sugimoto M., Negi J., Monda K., Higaki T., Isogai Y., Nakano T., Hasezawa S., Iba K., 2016. Dominant and recessive mutations in the Raf-like kinase HT1 gene completely disrupt stomatal responses to CO2 in Arabidopsis. J. Exp. Bot. 67, 3251-3261.
[41] Hashimoto-Sugimoto M., Negi J., Young J., Israelsson M., Schroeder J.I., Iba K., 2006. Arabidopsis HT1 kinase controls stomatal movements in response to CO2. Nat. Cell Biol. 8, 391-397.
[42] Hatch M.D., Agostino A., Burnell J.N., 1987. Photosynthesis in phosphoenolpyruvate carboxykinase-type C4 plants: activity and role of mitochondria in bundle sheath cells. Arch. Biochem. Biophys. 261, 357-367.
[43] Haus M.J., Li M., Chitwood D.H., Jacobs T.W., 2018. Long-distance and transgenerational stomatal patterning by CO2 across Arabidopsis organs. Front. Plant Sci. 9, 1417.
[44] Havaux M., Niyogi K.K., 1999. The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proc. Natl. Acad. Sci. U.S.A. 96, 8762-8767.
[45] Hertle A.P., Blunder T., Wunder T., Pesaresi P., Pribil M., Armbruster U., Leister D., 2013. PGRL1 is the elusive ferredoxin-plastoquinone reductase in photosynthetic cyclic electron flow. Mol. Cell 49, 511-523.
[46] Hetherington A.M., Woodward F.I., 2003. The role of stomata in sensing and driving environmental change. Nature 424, 901-908.
[47] Hiyama A., Takemiya A., Munemasa S., Okuma E., Sugiyama N., Tada Y., Murata Y., Shimazaki K., 2017. Blue light and CO2 signals converge to regulate light-induced stomatal opening. Nat. Commun. 8, 1284.
[48] Hu H., Boisson-Dernier A., Israelsson-Nordstr€om M., B€ohmer M., Xue S., Ries A., Godoski J., Kuhn J.M., Schoroeder J.I., 2010. Carbonic anhydrases are upstream regulators of CO2-controlled stomatal movements in guard cells. Nat. Cell Biol. 12, 87-93.
[49] Karpinski S., Gabrys H., Mateo A., Karpinska B., Mullineaux P.M., 2003. Light perception in plant disease defence signalling. Curr. Opin. Plant Biol. 6, 390-396.
[50] Karpinski S., Reynolds H., Karpinska B., Wingsle G., Creissen G., Mullineaux P., 1999. Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science 284, 654-657.
[51] Kono M., Noguchi K., Terashima I., 2014. Roles of the cyclic electron flow around PSI (CEF-PSI) and O2-dependent alternative pathways in regulation of the photosynthetic electron flow in short-term fluctuating light in Arabidopsis thaliana. Plant Cell Physiol. 55, 990-1004.
[52] Kono M., Terashima I., 2016. Elucidation of photoprotective mechanisms of PSI against fluctuating light photoinhibition. Plant Cell Physiol. 57, 1405-1414.
[53] Kono M., Yamori W., Suzuki Y., Terashima I., 2017. Photoprotection of PSI by far-red light against the fluctuating light-induced photoinhibition in Arabidopsis thaliana and field-grown plants. Plant Cell Physiol. 58, 35-45.
[54] Krapp A., Stitt M., 1995. An evaluation of direct and indirect mechanisms for the “sinkregulation” of photosynthesis in spinach: changes in gas exchange, carbohydrates, metabolites, enzyme activities and steady-state transcript levels after cold-girdling source leaves. Planta 195, 313-323.
[55] Lake J.A., Quick W.P., Beerling D.J., Woodward F.I., 2001. Signals from mature to new leaves. Nature 411, 154.
[56] Layne D.R., Flore J.A., 1993. Physiological responses of Prunus cerasus to whole-plant source manipulation. Leaf gas exchange, chlorophyll fluorescence, water relations and carbohydrate concentrations. Physiol. Plant. 88, 44-51.
[57] Lazova G.N., Kicheva M.I., Popova L.P., 2000. The effect of abscisic acid and methyl jasmonate on carbonic anhydrase activity in pea. Photosynthetica 36, 631-634.
[58] Li P.H., Sioson A., Mane S.P., Ulanov A., Grothaus G., Heath L.S., Murali T.M., Bohnert H.J., Grene R., 2006. Response diversity of Arabidopsis thaliana ecotypes in elevated [CO2] in the field. Plant Mol. Biol. 62, 593-609.
[59] Li Q., Shao J., Tang S., Shen Q., Wang T., Chen W., Hong Y., 2015. Wrinkled1 accelerates flowering and regulates lipid homeostasis between oil accumulation and membrane lipid anabolism in Brassica napus. Front. Plant Sci. 6, 1015.
[60] Long S.P., Ainsworth E.A., Rogers A., Ort D.R., 2004. Rising atmospheric carbon dioxide: plants FACE the future. Annu. Rev. Plant Biol. 55, 591-628.
[61] Lv C., Hu Z., Wei J., Wang Y., 2022. Transgenerational effects of elevated CO2 on rice photosynthesis and grain yield. Plant Mol. Biol. 110, 413-424.
[62] Marquardt A., Henry R.J., Botha F.C., 2021. Effect of sugar feedback regulation on major genes and proteins of photosynthesis in sugarcane leaves. Plant Physiol. Biochem. 158, 321-333.
[63] Mateo A., Mühlenbock P., Rustérucci C., Chang C.C.C., Miszalski Z., Karpinska B., Parker J.E., Mullineaux P.M., Karpinski S., 2004. LESION SIMULATING DISEASE 1 is required for acclimation to conditions that promote excess excitation energy. Plant Physiol. 136, 2818-2830.
[64] Miyake C.,2020. Molecular mechanism of oxidation of P700 and suppression of ROS production in photosystem I in response to electron-sink limitations in C3 plants. Antioxidants 9, 230.
[65] Miyazaki S., Fredricksen M., Hollis K.C., Poroyko V., Shepley D., Galbraith D.W., Long S.P., Bohnert H.J., 2004. Transcript expression profiles of Arabidopsis thaliana grown under controlled conditions and open-air elevated concentrations of CO2 and of O3. Field Crops Res. 90, 47-59.
[66] Miyazawa S.I., Warren C.R., Turpin D.H., Livingston N.J., 2011. Determination of the site of CO2 sensing in poplar: is the area-based N content and anatomy of new leaves determined by their immediate CO2 environment or by the CO2 environment of mature leaves? J. Exp. Bot. 62, 2787-2796.
[67] Mizokami Y., Noguchi K., Kojima M., Sakakibara H., Terashima I., 2019a. Effects of instantaneous and growth CO2 levels and abscisic acid on stomatal and mesophyll conductances. Plant Cell Environ. 42, 1257-1269.
[68] Mizokami Y., Sugiura D., Watanabe C.K.A., Betsuyaku E., Inada N., Terashima I., 2019b. Elevated CO2-induced changes in mesophyll conductance and anatomical traits in wild type and carbohydrate-metabolism mutants of Arabidopsis. J. Exp. Bot. 70, 4807-4818.
[69] Moore B.D., Cheng S.H., Sims D., Seemann J.R., 1999. The biochemical and molecular basis for photosynthetic acclimation to elevated atmospheric CO2. Plant Cell Environ. 22, 567-582.
[70] Mori I.C., Rhee J., Shibasaka M., Sasano S., Kaneko T., Horie T., Katsuhara M., 2014. CO2 transport by PIP2 aquaporins of barley. Plant Cell Physiol. 55, 251-257.
[71] Mott K.A., Sibbernsen E.D., Shope J.C., 2008. The role of the mesophyll in stomatal responses to light and CO2. Plant Cell Environ. 31, 1299-1306.
[72] Munekage Y., Hashimoto M., Miyake C., Tomizawa K.I., Endo T., Tasaka M., Shikanai T., 2004. Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 429, 579-582.
[73] Munekage Y., Hojo M., Meurer J., Endo T., Tasaka M., Shikanai T., 2002. PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell 110, 361-371.
[74] Murata N., Nishiyama Y., 2018. ATP is a driving force in the repair of photosystem II during photoinhibition. Plant Cell Environ. 41, 285-299.
[75] Nadal M., Carriquí M., Flexas J., 2021. Mesophyll conductance to CO2 diffusion in a climate change scenario: effects of elevated CO2, temperature and water stress. In: Becklin, K., Ward, J., Way, D. (Eds.), Photosynthesis, Respiration, and Climate Change. Springer International Publishing, Cham, Switzerland, pp. 49-78.
[76] Nakano H., Makino A., Mae T., 1997. The effect of elevated partial pressures of CO2 on the relationship between photosynthetic capacity and N content in rice leaves. Plant Physiol. 115, 191-198.
[77] Negi J., Matsuda O., Nagasawa T., Oba Y., Takahashi H., Kawai-Yamada M., Uchimiya H., Hashimoto M., Iba K., 2008. CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature 452, 483-486.
[78] Nie G., Hendrix D.L., Webber A.N., Kimball B.A., Long S.P., 1995. Increased accumulation of carbohydrates and decreased photosynthetic gene transcript levels in wheat grown at an elevated CO2 concentration in the field. Plant Physiol. 108, 975-983.
[79] Niyogi K.K.,1999. Photoprotection revisited: genetic and molecular approaches. Annu. Rev. Plant Physiol. Plant Molec. Biol. 50, 333-359.
[80] Niyogi K.K.,2000. Safety valves for photosynthesis. Curr. Opin. Plant Biol. 3, 455-460.
[81] Noguchi K., Tsunoda T., Miyagi A., Kawai-Yamada M., Sugiura D., Miyazawa S.I., Tokida T., Usui Y., Nakamura H., Sakai H., Hasegawa T., 2018. Effects of elevated atmospheric CO2 on respiratory rates in mature leaves of two rice cultivars grown at a free-air CO2 enrichment site and analyses of the underlying mechanisms. Plant Cell Physiol. 59, 637-649.
[82] Nunes C., O'Hara L.E., Primavesi L.F., Delatte T.L., Schluepmann H., Somsen G.W., Silva A.B., Fevereiro P.S., Wingler A., Paul M.J., 2013. The trehalose 6-phosphate/snRK1 signaling pathway primes growth recovery following relief of sink limitation. Plant Physiol. 162, 1720-1732.
[83] Ozawa Y., Tanaka A., Suzuki T., Sugiura D., 2023. Sink-source imbalance triggers delayed photosynthetic induction: transcriptomic and physiological evidence. Physiol. Plant. 175, e14000.
[84] Pan C., Ahammed G.J., Li X., Shi K., 2018. Elevated CO2 improves photosynthesis under high temperature by attenuating the functional limitations to energy fluxes, electron transport and redox homeostasis in tomato leaves. Front. Plant Sci. 9, 1739.
[85] Pan C., Zhang H., Ma Q., Fan F., Fu R., Ahammed G.J., Yu J., Shi K., 2019. Role of ethylene biosynthesis and signaling in elevated CO2-induced heat stress response in tomato. Planta 250, 563-572.
[86] Paul M.J., Foyer C.H., 2001. Sink regulation of photosynthesis. J. Exp. Bot. 52, 1383-1400.
[87] Pearcy R.W.,1978. Effect of growth temperature on the fatty acid composition of the leaf lipids in atriplex lentiformis (Torr.) wats. Plant Physiol. 61, 484-486.
[88] Peet M.M., Huber S.C., Patterson D.T., 1986. Acclimation to high CO2 in monoecious cucumbers. II. Carbon exchange rates, enzyme activities, and starch and nutrient concentrations. Plant Physiol. 80, 63-67.
[89] Peuke A.D., Windt C., Van As H., 2006. Effects of cold-girdling on flows in the transport phloem in Ricinus communis: is mass flow inhibited? Plant Cell Environ. 29, 15-25.
[90] Pfannschmidt T., Liere K., 2005. Redox regulation and modification of proteins controlling chloroplast gene expression. Antioxid. Redox Signal. 7, 607-618.
[91] Pfannschmidt T., Nilsson A., Tullberg A., Link G., Allen J.F., 1999. Direct transcriptional control of the chloroplast genes psbA and psaAB adjusts photosynthesis to light energy distribution in plants. IUBMB Life 48, 271-276.
[92] Prak S., Hem S., Boudet J., Viennois G., Sommerer N., Rossignol M., Maurel C., Santoni V., 2008. Multiple phosphorylations in the C-terminal tail of plant plasma membrane aquaporins: role in subcellular trafficking of AtPIP2;1 in response to salt stress. Mol. Cell. Proteomics 7, 1019-1030.
[93] Queval G., Neukermans J., Vanderauwera S., van Breusegem F., Noctor G., 2012. Day length is a key regulator of transcriptomic responses to both CO2 and H2O2 in Arabidopsis. Plant Cell Environ. 35, 374-387.
[94] Rodrigues A.M., Jorge T., Osorio S., Pott D.M., Lidon F.C., Damatta F.M., Marques I., Ribeiro-Barros A.I., Ramalho J.C., António C., 2021. Primary metabolite profile changes in Coffea spp. promoted by single and combined exposure to drought and elevated CO2 concentration. Metabolites 11, 427.
[95] Rowland-Bamford A.J., Baker J.T., Allen L.H., Bowes J.G., 1991. Acclimation of rice to changing atmospheric carbon dioxide concentration. Plant Cell Environ. 14, 577-583.
[96] Ruban A.V.,2016. Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiol. 170, 1903-1916.
[97] Sage R.F.,2004. Synthetic evolution of C4 photosynthesis. New Phytol. 161, 341-370.
[98] Sage R.F., Sharkey T.D., Seemann J.R., 1988. The in-vivo response of the ribulose-1,5-bisphosphate carboxylase activation state and the pool sizes of photosynthetic metabolites to elevated CO2 in Phaseolus vulgaris L. Planta 174, 407-416.
[99] Sakoda K., Yamori W., Groszmann M., Evans J.R., 2021. Stomatal, mesophyll conductance, and biochemical limitations to photosynthesis during induction. Plant Physiol. 185, 146-160.
[100] Santoni V.,2017. Plant aquaporin posttranslational regulation. In: Chaumont, F., Tyerman, S. (Eds.), Plant Aquaporins. Springer, Cham, Switzerland, pp. 83-105.
[101] Sasek T.W., Delucia E.H., Strain B.R., 1985. Reversibility of photosynthetic inhibition in cotton after long-term exposure to elevated CO2 concentrations. Plant Physiol. 78, 619-622.
[102] Sejima T., Takagi D., Fukayama H., Makino A., Miyake C., 2014. Repetitive short-pulse light mainly inactivates photosystem I in sunflower leaves. Plant Cell Physiol. 55, 1184-1193.
[103] Semedo J.N., Rodrigues A.P., Lidon F.C., Pais I.P., Marques I., Gouveia D., Armengaud J., Silva M.J., Martins S., Semedo M.C., Dubberstein D., Partelli F.L., Reboredo F.H., Scotti-Campos P., Ribeiro-Barros A.I., Damatta F.M., Ramalho J.C., 2021. Intrinsic non-stomatal resilience to drought of the photosynthetic apparatus in Coffea spp. is strengthened by elevated air [CO2]. Tree Physiol. 41, 708-727.
[104] Shanmugam S., Kjaer K.H., Ottosen C., Rosenqvist E., Sharma D.K., Wollenweber B., 2013. The alleviating effect of elevated CO2 on heat stress susceptibility of two wheat (Triticum aestivum L.) cultivars. J. Agron. Crop Sci. 199, 340-350.
[105] Sharma,D.K., Andersen S.B., Ottosen C.-O., Rosenqvist E., 2015.Wheat cultivars selected for high Fv/Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter. Physiol. Plant. 153, 284-298.
[106] Shikanai T., Endo T., Hashimoto T., Yamada Y., Asada K., Yokota A., 1998. Directed disruption of the tobacco ndhB gene impairs cyclic electron flow around photosystem I. Proc. Natl. Acad. Sci. U.S.A. 95, 9705-9709.
[107] Shimakawa G., Iwamoto T., Mabuchi T., Saito R., Yamamoto H., Amako K., Sugimoto T., Makino A., Miyake C., 2013. Acrolein, an α,β-unsaturated carbonyl, inhibits both growth and PSII activity in the cyanobacterium Synechocystis sp. PCC 6803. Biosci. Biotechnol. Biochem. 77, 1655-1660.
[108] Singh V., Singh P.K., Siddiqui A., Singh S., Banday Z.Z., Nandi A.K., 2016. Overexpression of Arabidopsis thaliana SFD1/GLY1, the gene encoding plastid localized glycerol-3-phosphate dehydrogenase, increases plastidic lipid content in transgenic rice plants. J. Plant Res. 129, 285-293.
[109] Singsaas E.L., Ort D.R., Delucia E.H., 2003. Elevated CO2 effects on mesophyll conductance and its consequences for interpreting photosynthetic physiology. Plant Cell Environ. 27, 41-50.
[110] Sitt M.,1991. Rising CO2 levels and their potential significance for carbon flow in photosynthetic cells. Plant Cell Environ. 14, 741-762.
[111] Song Y., Yu J., Huang B., 2014. Elevated CO2-mitigation of high temperature stress associated with maintenance of positive carbon balance and carbohydrate accumulation in Kentucky bluegrass. PLoS One 9, e89725.
[112] Stitt M., Krapp A., 1999. The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant Cell Environ. 22, 583-621.
[113] Sugiura D., Betsuyaku E., Terashima I., 2015. Manipulation of the hypocotyl sink activity by reciprocal grafting of two Raphanus sativus varieties: its effects on morphological and physiological traits of source leaves and whole-plant growth. Plant Cell Environ. 38, 2629-2640.
[114] Sugiura D., Terashima I., Evans J.R., 2020. A decrease in mesophyll conductance by cell-wall thickening contributes to photosynthetic downregulation. Plant Physiol. 183, 1600-1611.
[115] Sugiura D., Watanabe C.K.A., Betsuyaku E., Terashima I., 2017. Sink-source balance and down-regulation of photosynthesis in Raphanus sativus: effects of grafting, N and CO2. Plant Cell Physiol. 58, 2043-2056.
[116] Suorsa M., J€arvi S., Grieco M., Nurmi M., Pietrzykowska M., Rantala M., Kangasjärvi, S., Paakkarinen V., Tikkanen M., Jansson S., Aro E.M., 2012. PROTON GRADIENT REGULATION5 is essential for proper acclimation of Arabidopsis photosystem I to naturally and artificially fluctuating light conditions. Plant Cell 24, 2934-2948.
[117] Takagi D., Inoue H., Odawara M., Shimakawa G., Miyake C., 2014. The Calvin cycle inevitably produces sugar-derived reactive carbonyl methylglyoxal during photosynthesis: a potential cause of plant diabetes. Plant Cell Physiol. 55, 333-340.
[118] Takahashi Y., Bosmans K.C., Hsu P.K., Paul K., Seitz C., Yeh C.Y., Wang Y.S., Yarmolinsky D., Sierla M., Vahisalu T., McCammon J.A., Kangasj€arvi J., Zhang L., Kollist H., Trac T., Schroeder J.I., 2022. Stomatal CO2/bicarbonate sensor consists of two interacting protein kinases, Raf-like HT1 and non-kinase-activity requiring MPK12/MPK4. Sci. Adv. 8, 1-14.
[119] Takizawa K., Cruz J.A., Kanazawa A., Kramer D.M., 2007. The thylakoid proton motive force in vivo. Quantitative, non-invasive probes, energetics, and regulatory consequences of light-induced pmf. Biochim. Biophys. Acta-Bioenerg. 1767, 1233-1244.
[120] Tan S.L., Huang X., Li W.Q., Zhang S.B., Huang W., 2021. Elevated CO2 concentration alters photosynthetic performances under fluctuating light in Arabidopsis thaliana. Cells 10, 2329.
[121] Tazoe Y., von Caemmerer S., Badger M.R., Evans J.R., 2009. Light and CO2 do not affect the mesophyll conductance to CO2 diffusion in wheat leaves. J. Exp. Bot. 60, 2291-2301.
[122] Tazoe Y., von Caemmerer S., Estavillo G.M., Evans J.R., 2011. Using tunable diode laser spectroscopy to measure carbon isotope discrimination and mesophyll conductance to CO2 diffusion dynamically at different CO2 concentrations. Plant Cell Environ. 34, 580-591.
[123] Teng N., Wang J., Chen T., Wu X., Wang Y., Lin J., 2006. Elevated CO2 induces physiological, biochemical and structural changes in leaves of Arabidopsis thaliana. New Phytol. 172, 92-103.
[124] Tholen D., Zhu X.G., 2011. The mechanistic basis of internal conductance: a theoretical analysis of mesophyll cell photosynthesis and CO2 diffusion. Plant Physiol. 156, 90-105.
[125] Thompson M., Gamage D., Hirotsu N., Martin A., Seneweera S., 2017. Effects of elevated carbon dioxide on photosynthesis and carbon partitioning: a perspective on root sugar sensing and hormonal crosstalk. Front. Physiol. 8, 578.
[126] Tikhonov A.N.,2013. pH-dependent regulation of electron transport and ATP synthesis in chloroplasts. Photosynth. Res. 116, 511-534.
[127] Tikhonov A.N.,2014. The cytochrome b6f complex at the crossroad of photosynthetic electron transport pathways. Plant Physiol. Biochem. 81, 163-183.
[128] T€ornroth-Horsefield S., Wang Y., Hedfalk K., Johanson U., Karlsson M., Tajkhorshid E., Neutze R., Kjellbom P., 2006. Structural mechanism of plant aquaporin gating. Nature 439, 688-694.
[129] Urban L., Alphonsout L., 2007. Girdling decreases photosynthetic electron fluxes and induces sustained photoprotection in mango leaves. Tree Physiol. 27, 345-352.
[130] Vahisalu T., Kollist H., Wang Y.F., Nishimura N., Chan W.Y., Valerio G., Lamminm€aki A., Brosché M., Moldau H., Desikan R., Schroeder J.I., Kangasj€arvi J., 2008. SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. Nature 452, 487-491.
[131] Vanhercke T., Belide S., Taylor M.C., El Tahchy A., Okada S., Rolland V., Liu Q., Mitchell M., Shrestha P., Venables I., Ma L., Blundell C., Mathew A., Ziolkowski L., Niesner N., Hussain D., Dong B., Liu G., Godwin I.D., Lee J., Rug M., Zhou X.R., Singh S.P., Petrie J.R., 2019a. Up-regulation of lipid biosynthesis increases the oil content in leaves of Sorghum bicolor. Plant Biotechnol. J. 17, 220-232.
[132] Vanhercke T., Dyer J.M., Mullen R.T., Kilaru A., Rahman M.M., Petrie J.R., Green A.G., Yurchenko O., Singh S.P., 2019b. Metabolic engineering for enhanced oil in biomass. Prog. Lipid Res. 74, 103-129.
[133] Van Oosten J.J., Bdstford R.T., 1995. Some relationships between the gas exchange, biochemistry and molecular biology of photosynthesis during leaf development of tomato plants after transfer to different carbon dioxide concentrations. Plant Cell Environ. 18, 1253-1266.
[134] Vrábl D., Vašková M., Hronková M., Flexas J., ŠantrČek J., 2009. Mesophyll conductance to CO2 transport estimated by two independent methods: effect of variable CO2 concentration and abscisic acid. J. Exp. Bot. 60, 2315-2323.
[135] Wang Y., Wang Y.Z., Tang Y., Zhu X.G., 2022. Stomata conductance as a goalkeeper for increased photosynthetic efficiency. Curr. Opin. Plant Biol. 70, 102310.
[136] Woodward F.I.,1987. Stomatal numbers are sensitive to increases in CO2 from preindustrial levels. Nature 327, 617-618.
[137] Woodward F.I., Kelly C.K., 1995. The influence of CO2 concentration on stomatal density. New Phytol. 131, 311-327.
[138] Woodward F.I., Lake J.A., Quick W.P., 2002. Stomatal development and CO2: ecological consequences. New Phytol. 153, 477-484.
[139] Xiong D.,2023. Leaf anatomy does not explain the large variability of mesophyll conductance across C3 crop species. Plant J. 113, 1035-1048.
Funding
* E-mail address: yusuke.mizokami@gmail.com (Y. Mizokami).
PDF

Accesses

Citations

Detail

Sections
Recommended

/