Sensor-based measurements of NDVI in small grain and corn fields by tractor, drone, and satellite platforms

Jarrod O. Millera,*, Pinki Mondala,b, Manan Sarupriab

PDF
Crop and Environment ›› 2024, Vol. 3 ›› Issue (1) : 33-42. DOI: 10.1016/j.crope.2023.11.001
Research article

Sensor-based measurements of NDVI in small grain and corn fields by tractor, drone, and satellite platforms

  • Jarrod O. Millera,*, Pinki Mondala,b, Manan Sarupriab
Author information +
History +

Abstract

The use of sensors for variable rate nitrogen (VRN) applications is transitioning from equipment-based to drone and satellite technologies. However, regional algorithms, initially designed for proximal active sensors, require evaluation for compatibility with remotely sensed reflectance and N-rate predictions. This study observed normalized difference vegetation index (NDVI) data from six small grain and two corn fields over three years. We employed three platforms: tractor-mounted active sensors (T-NDVI), passive multispectral drone (D-NDVI), and satellite (S-NDVI) sensors. Averaged NDVI values were extracted from the as-applied equipment polygons. Correlations between NDVI values from the three platforms were positive and strong, with D-NDVI consistently recording the highest values, particularly in areas with lower plant biomass. This was attributed to D-NDVI's lower soil reflectance and its ability to measure the entire biomass within equipment polygons. For small grains, sensors spaced on equipment booms might not capture accurate biomass in poor-growing and low NDVI regions. Regarding VRN, S-NDVI and D-NDVI occasionally aligned with T-NDVI recommendations but often suggested half the active sensor rate. Final yields showed some correlation with landscape variables, irrespective of N application. This finding suggests the potential use of drone or satellite imagery to provide multiple NDVI maps before application, incorporating expected landscape responses and thereby enhancing VRN effectiveness.

Keywords

Corn / Drone / NDVI / Nitrogen / Satellite / Small grains

Cite this article

Download citation ▾
Jarrod O. Miller, Pinki Mondal, Manan Sarupria. Sensor-based measurements of NDVI in small grain and corn fields by tractor, drone, and satellite platforms. Crop and Environment, 2024, 3(1): 33‒42 https://doi.org/10.1016/j.crope.2023.11.001

References

[1] Ator S.W., Blomquist J.D., Webber J.S., Chanat J.G., 2020. Factors driving nutrient trends in streams of the Chesapeake Bay watershed. J. Environ. Qual. 49, 812-834.
[2] Aula L., Omara P., Nambi E., Oyebiyi F.B., Raun W.R., 2020. Review of active optical sensors for improving winter wheat nitrogen use efficiency. Agronomy 10, 1157.
[3] Barker D.W., Sawyer J.E., 2010. Using active canopy sensors to quantify corn nitrogen stress and nitrogen application rate. Agron. J. 102, 964-971.
[4] Barker D.W., Sawyer J.E., 2012. Using active canopy sensing to adjust nitrogen application rate in corn. Agron. J. 104, 926-933.
[5] Beegle D.,2013. Nutrient management and the Chesapeake Bay. J. Contemp. Wat. Res. Educ. 151, 3-8.
[6] Benincasa P., Antognelli S., Brunetti L., Fabbri C.A., Natale A., Sartoretti V.,Modeo G., Guiducci M., Tei F., Vizzari M., 2018. Reliability of NDVI derived by high resolution satellite and UAV compared to in-field methods for the evaluation of early crop N status and grain yield in wheat. Exp. Agric. 54, 604-622.
[7] Cao Q., Miao Y., Feng G., Gao X., Liu B., Liu Y., Li F., Khosla R., Mulla D.J., Zhang F., 2017. Improving nitrogen use efficiency with minimal environmental risks using an active canopy sensor in a wheat-maize cropping system. Field Crops Res. 214, 365-372.
[8] Colaço A.F., Bramley R.G., 2018. Do crop sensors promote improved nitrogen management in grain crops? Field Crops Res. 218, 126-140.
[9] Dellinger A.E., Schmidt J.P., Beegle D.B., 2008. Developing nitrogen fertilizer recommendations for corn using an active sensor. Agron. J. 100, 1546-1552.
[10] Duan T., Chapman S.C., Guo Y., Zheng B., 2017. Dynamic monitoring of NDVI in wheat agronomy and breeding trials using an unmanned aerial vehicle. Field Crops Res. 210, 71-80.
[11] Erdle K., Mistele B., Schmidhalter U., 2011. Comparison of active and passive spectral sensors in discriminating biomass parameters and nitrogen status in wheat cultivars. Field Crops Res. 124, 74-84.
[12] Fassa V., Pricca N., Cabassi G., Bechini L., Corti M., 2022. Site-specific nitrogen recommendations’ empirical algorithm for maize crop based on the fusion of soil and vegetation maps. Comput. Electron. Agric. 203, 107479.
[13] Franzen D., Kitchen N., Holland K., Schepers J., Raun W., 2016. Algorithms for inseason nutrient management in cereals. Agron. J. 108, 1775-1781.
[14] Guan S., Fukami K., Matsunaka H., Okami M., Tanaka R., Nakano H., Sakai T., Nakano K., Ohdan H., Takahashi K., 2019. Assessing correlation of high-resolution NDVI with fertilizer application level and yield of rice and wheat crops using small UAVs. Remote Sens. 11, 112.
[15] Heinemann P., Haug S., Schmidhalter U., 2022. Evaluating and defining agronomically relevant detection limits for spectral reflectance-based assessment of N uptake in wheat. Eur. J. Agron. 140, 126609.
[16] Holland K.H., Lamb D.W., Schepers J.S., 2012. Radiometry of proximal active optical sensors (AOS) for agricultural sensing. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 5, 1793-1802.
[17] Holland K.H., Schepers J.S., 2010. Derivation of a variable rate nitrogen application model for in-season fertilization of corn. Agron. J. 102, 1415-1424.
[18] Imap M.D.,2022. LiDAR DEM Maps by County. https://imap.maryland.gov/pages/lidar-download.
[19] Inman D., Khosla R., Mayfield T., 2005a. On-the-go active remote sensing for efficient crop nitrogen management. Sens. Rev. 25, 209-214.
[20] Inman D., Khosla R., Westfall D.G., Reich R., 2005b. Nitrogen uptake across site specific management zones in irrigated corn production systems. Agron. J. 97, 169-176.
[21] Kipp S., Mistele B., Schmidhalter U., 2012. Active sensor performance-dependence on measuring height, device temperature and light intensity. In: Stafford, J., Schepers, J., Carter, P. (Eds.), 11th International Conference on Precision Agriculture. Indianapolis, USA, pp. 15-18.
[22] Miller J.O., Adkins J., 2021. Monitoring winter wheat growth at different heights using aerial imagery. Agron. J. 113, 1586-1595.
[23] Miller J.O., Shober A.L., VanGessel M.J., 2022. Post-harvest drone flights to measure weed growth and yield associations. Agric. Env. Lett. 7, e20081.
[24] Mizuta,K.,Morales A.C., Lacerda L.N.,Miao,Y.X.,Cammarano,D., Coulter J.A.,Nielsen R.L., Gunzenhauser R.,McArtor, B., Kuehner, K.,Wakahara, S.,Mulla, D.J., Quinn, D.J., 2022. Evaluating a satellite remote sensing and calibration strip-based precision nitrogen management strategy for maize in Minnesota and Indiana. In: Proceedings of the 15th International Conference on Precision Agriculture. Minneapolis, USA, pp. 1-9.
[25] Morris T.F., Murrell T.S., Beegle D.B., Camberato J.J., Ferguson R.B., Grove J., Ketterings Q., Kyveryga P.M., Laboski C.A., McGrath J.M., Meisinger J.J., Melkonian J., Nafziger E.D., Osmond D., Sawyer J.E., Scharf P.C., Smith W., Spargo J.T., van Es H.M., Yang H.S., 2018. Strengths and limitations of nitrogen rate recommendations for corn and opportunities for improvement. Agron. J. 110, 1-37.
[26] Naser M.A., Khosla R., Longchamps L., Dahal S., 2020. Using NDVI to differentiate wheat genotypes productivity under dryland and irrigated conditions. Remote Sens. 12, 824.
[27] Raun W.R., Solie J.B., Johnson G.V., Stone M.L., Lukina E.V., Thomason W.E., Schepers J.S., 2001. In-season prediction of potential grain yield in winter wheat using canopy reflectance. Agron. J. 93, 131-138.
[28] Raun W.R., Solie J.B., Martin K.L., Freeman K.W., Stone M.L., Johnson G.V., Mullen R.W., 2005a. Growth stage, development, and spatial variability in corn evaluated using optical sensor readings. J. Plant Nutr. 28, 173-182.
[29] Raun W.R., Solie J.B., Stone M.L., Martin K.L., Freeman K.W., Mullen R.W., Zhang H., Schepers J.S., Johnson G.V., 2005b. Optical sensor-based algorithm for crop nitrogen fertilization. Commun. Soil Sci. Plant Anal. 36, 2759-2781.
[30] Raun W.R., Solie J.B., Taylor R.K., Arnall D.B., Mack C.J., Edmonds D.E., 2008. Ramp calibration strip technology for determining midseason nitrogen rates in corn and wheat. Agron. J. 100, 1088-1093.
[31] Roberts D.F., Kitchen N.R., Scharf P.C., Sudduth K.A., 2010. Will variable-rate nitrogen fertilization using corn canopy reflectance sensing deliver environmental benefits? Agron. J. 102, 85-95.
[32] Samborski S.M., Tremblay N., Fallon E., 2009. Strategies to make use of plant sensorsbased diagnostic information for nitrogen recommendations. Agron. J. 101, 800-816.
[33] Solie J.B., Monroe A.D., Raun W.R., Stone M.L., 2012. Generalized algorithm for variable-rate nitrogen application in cereal grains. Agron. J. 104, 378-387.
[34] Sozzi M., Kayad A., Gobbo S., Cogato A., Sartori L., Marinello F., 2021. Economic comparison of satellite, plane and UAV-acquired NDVI images for site-specific nitrogen application: observations from Italy. Agronomy 11, 2098.
[35] Stadler A., Rudolph S., Kupisch M., Langensiepen M., van der Kruk J., Ewert F., 2015. Quantifying the effects of soil variability on crop growth using apparent soil electrical conductivity measurements. Eur. J. Agron. 64, 8-20.
[36] Tagarakis A.C., Ketterings Q.M., 2018. Proximal sensor-based algorithm for variable rate nitrogen application in maize in northeast U.S.A. Comput. Electron. Agric. 145, 373-378.
[37] Thompson L.J., Puntel L.A., 2020. Transforming unmanned aerial vehicle (UAV) and multispectral sensor into a practical decision support system for precision nitrogen management in corn. Remote Sens. 12, 1597.
[38] Thomason W.E., Phillips S.B., Davis P.H., Warren J.G., Alley M.M., Reiter M.S., 2011. Variable nitrogen rate determination from plant spectral reflectance in soft red winter wheat. Precis. Agric. 12, 666-681.
[39] Walsh O.S., Shafian S., Marshall J.M., Jackson C., McClintick-Chess J.R., Blanscet S.M., Swoboda K., Thompson C., Belmont K.M., Walsh W.L., 2018. Assessment of UAV based vegetation indices for nitrogen concentration estimation in spring wheat. Adv. Remote Sens. 7, 71-90.
[40] Winterhalter L., Mistele B., Schmidhalter U., 2013. Evaluation of active and passive sensor systems in the field to phenotype maize hybrids with high-throughput. Field Crops Res. 154, 236-245.
[41] Yu J., Wang J., Leblon B., Song Y., 2021. Nitrogen estimation for wheat using UAVbased and satellite multispectral imagery, topographic metrics, leaf area index, plant height, soil moisture, and machine learning methods. Nitrogen 3, 1-25.
Funding
* E-mail address: Jarrod@udel.edu (J.O. Miller).
PDF

Accesses

Citations

Detail

Sections
Recommended

/