Infinity Norm Bounds for the Inverse of $\textrm{SDD}_1$-Type Matrices with Applications

Yuanjie Geng , Yuxue Zhu , Fude Zhang , Feng Wang

Communications on Applied Mathematics and Computation ›› : 1 -15.

PDF
Communications on Applied Mathematics and Computation ›› : 1 -15. DOI: 10.1007/s42967-024-00457-z
Original Paper

Infinity Norm Bounds for the Inverse of $\textrm{SDD}_1$-Type Matrices with Applications

Author information +
History +
PDF

Abstract

A new subclass of H-matrices named $\textrm{SDD}_1$-type matrices is introduced. The relationships between $\textrm{SDD}_1$-type matrices and other subclasses of H-matrices are studied. Moreover, the infinite norm bounds for the inverse of $\textrm{SDD}_1$-type matrices are provided. As applications, error bounds of the linear complementarity problems (LCPs) for $\textrm{SDD}_1$-type matrices and strictly diagonally dominant ($\textrm{SDD}$) matrices strictly diagonally dominant (are also presented, which improve some existing bounds. Numerical examples are presented to demonstrate the effectiveness of the obtained results.

Cite this article

Download citation ▾
Yuanjie Geng, Yuxue Zhu, Fude Zhang, Feng Wang. Infinity Norm Bounds for the Inverse of $\textrm{SDD}_1$-Type Matrices with Applications. Communications on Applied Mathematics and Computation 1-15 DOI:10.1007/s42967-024-00457-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Berman A, Plemmons RJ. Nonnegative Matrices in the Mathematical Sciences, 1994, Philadelphia, Society for Industrial and Applied Mathematics

[2]

Chen XJ, Xiang SH. Computation of error bounds for $P$-matrix linear complementarity problems. Math. Program., 2006, 106(3): 513-525

[3]

Chen, X.Y., Li, Y.T., Liu, L., Wang, Y.Q.: Infinity norm upper bounds for the inverse of $\text{SDD}_1$ matrices. AIMS Math. 7(5), 8847–8860 (2022)

[4]

Cvetković D, Cvetković L, Li CQ. CKV-type matrices with applications. Linear Algebra Appl., 2021, 608(1): 158-184

[5]

Cvetković, L.: $H$-matrix theory vs. eigenvalue localization. Numer. Algorithms 42(3/4), 229–245 (2006)

[6]

Cvetković L, Kostić V, Bru R, Pedroche F. A simple generalization of Geršgorin’s theorem. Adv. Comput. Math., 2011, 35: 271-280

[7]

Dai, P.F., Li, J.P., Zhao, S.Y.: Infinity norm bounds for the inverse for $\text{ GSDD}_1$ matrices using scaling matrices. Comput. Appl. Math. 42, 1–21 (2023)

[8]

García-Esnaola M, Peña JM. A comparison of error bounds for linear complementarity problems of $H$-matrices. Linear Algebra Appl., 2010, 433(5): 956-964

[9]

Geng, Y.J., Sun, D.S.: Error bounds for linear complementarity problems of strong $\text{ SDD}_1$ matrices and strong $\text{ SDD}_1$-$B$ matrices. AIMS Math. 8(11), 27052–27064 (2023)

[10]

Kolotilina LY . On Dashnic-Zusmanovich (DZ) and Dashnic-Zusmanovich type (DZT) matrices and their inverses. J. Math. Sci., 2019, 240(6): 799-812

[11]

Kolotilina LY. A new subclass of the class of nonsingular $H$-matrices and related inclusion sets for eigenvalues and singular values. J. Math. Sci., 2019, 240(6): 813-821

[12]

Kolotilina LY. Some bounds for inverses involving matrix sparsity pattern. J. Math. Sci., 2020, 249(2): 242-255

[13]

Li, C.Q., Cvetković, L., Wei, Y.M., Zhao, J.X.: An infinity norm bound for the inverse of Dashnic-Zusmanovich type matrices with applications. Linear Algebra Appl. 565, 99-122 (2019)

[14]

Liu JZ, Zhang J, Liu Y. The Schur complement of strictly doubly diagonally dominant matrices and its application. Linear Algebra Appl., 2012, 437(1): 168-183

[15]

Peña JM. Diagonal dominance, Schur complements and some classes of $H$-matrices and $P$-matrices. Adv. Comput. Math., 2011, 35: 357-373

[16]

Varah JM. A lower bound for the smallest singular value of a matrix. Linear Algebra Appl., 1975, 111(1): 3-5

[17]

Varga RS. Matrix Iterative Analysis, 2000, Berlin, Springer

[18]

Wang F, Yan WW, Zhao YX, Zhao PC. New error bounds for linear complementarity problems for $B^S$-matrices. Comput. Appl. Math., 2023, 42(226): 1-17

[19]

Wang, X.D., Wang, F.: Infinity norm upper bounds for the inverse of $\text{ SDD}_k$ matrices. AIMS Math. 8(10), 24999–25016 (2023)

[20]

Wang, Y.H., Song, X.N., Gao, L.: An infinity norm bound for the inverse of strong $\text{ SDD}_1$ matrices with applications. Jpn. J. Ind. Appl. Math. 40, 1287–1304 (2023)

[21]

Wang, Z.F., Li, C.Q., Li, Y.T.: Infimum of error bounds for linear complementarity problems of $\Sigma $-$\text{ SDD }$ and $\Sigma _1$-$\text{ SSD }$ matrices. Linear Algebra Appl. 581(1), 285–303 (2019)

[22]

Zhao, Y.X., Liu, L.L., Wang, F.: Error bounds for linear complementarity problems of $ \text{ SDD}_1$ matrices and $ \text{ SDD}_1$-$ B $ matrices. AIMS Math. 7, 11862–11878 (2022)

Funding

Guizhou Provincial Science and Technology Department(20191161)

Guizhou Provincial Youth Science and Technology Talents Growth Project(QJJ2023012)

RIGHTS & PERMISSIONS

Shanghai University

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/