Infinity Norm Bounds for the Inverse of $\textrm{SDD}_1$-Type Matrices with Applications
Yuanjie Geng , Yuxue Zhu , Fude Zhang , Feng Wang
Communications on Applied Mathematics and Computation ›› : 1 -15.
Infinity Norm Bounds for the Inverse of $\textrm{SDD}_1$-Type Matrices with Applications
A new subclass of H-matrices named $\textrm{SDD}_1$-type matrices is introduced. The relationships between $\textrm{SDD}_1$-type matrices and other subclasses of H-matrices are studied. Moreover, the infinite norm bounds for the inverse of $\textrm{SDD}_1$-type matrices are provided. As applications, error bounds of the linear complementarity problems (LCPs) for $\textrm{SDD}_1$-type matrices and strictly diagonally dominant ($\textrm{SDD}$) matrices strictly diagonally dominant (are also presented, which improve some existing bounds. Numerical examples are presented to demonstrate the effectiveness of the obtained results.
| [1] |
|
| [2] |
|
| [3] |
Chen, X.Y., Li, Y.T., Liu, L., Wang, Y.Q.: Infinity norm upper bounds for the inverse of $\text{SDD}_1$ matrices. AIMS Math. 7(5), 8847–8860 (2022) |
| [4] |
|
| [5] |
Cvetković, L.: $H$-matrix theory vs. eigenvalue localization. Numer. Algorithms 42(3/4), 229–245 (2006) |
| [6] |
|
| [7] |
Dai, P.F., Li, J.P., Zhao, S.Y.: Infinity norm bounds for the inverse for $\text{ GSDD}_1$ matrices using scaling matrices. Comput. Appl. Math. 42, 1–21 (2023) |
| [8] |
|
| [9] |
Geng, Y.J., Sun, D.S.: Error bounds for linear complementarity problems of strong $\text{ SDD}_1$ matrices and strong $\text{ SDD}_1$-$B$ matrices. AIMS Math. 8(11), 27052–27064 (2023) |
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
Li, C.Q., Cvetković, L., Wei, Y.M., Zhao, J.X.: An infinity norm bound for the inverse of Dashnic-Zusmanovich type matrices with applications. Linear Algebra Appl. 565, 99-122 (2019) |
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
Wang, X.D., Wang, F.: Infinity norm upper bounds for the inverse of $\text{ SDD}_k$ matrices. AIMS Math. 8(10), 24999–25016 (2023) |
| [20] |
Wang, Y.H., Song, X.N., Gao, L.: An infinity norm bound for the inverse of strong $\text{ SDD}_1$ matrices with applications. Jpn. J. Ind. Appl. Math. 40, 1287–1304 (2023) |
| [21] |
Wang, Z.F., Li, C.Q., Li, Y.T.: Infimum of error bounds for linear complementarity problems of $\Sigma $-$\text{ SDD }$ and $\Sigma _1$-$\text{ SSD }$ matrices. Linear Algebra Appl. 581(1), 285–303 (2019) |
| [22] |
Zhao, Y.X., Liu, L.L., Wang, F.: Error bounds for linear complementarity problems of $ \text{ SDD}_1$ matrices and $ \text{ SDD}_1$-$ B $ matrices. AIMS Math. 7, 11862–11878 (2022) |
Guizhou Provincial Science and Technology Department(20191161)
Guizhou Provincial Youth Science and Technology Talents Growth Project(QJJ2023012)
Shanghai University
/
| 〈 |
|
〉 |