Two Classes of Mixed Finite Element Methods for the Reissner-Mindlin Plate Problem

Jun Hu, Xueqin Yang

Communications on Applied Mathematics and Computation ›› 2024

Communications on Applied Mathematics and Computation All Journals
Communications on Applied Mathematics and Computation ›› 2024 DOI: 10.1007/s42967-024-00453-3
Original Paper

Two Classes of Mixed Finite Element Methods for the Reissner-Mindlin Plate Problem

Author information +
History +

Abstract

In this paper, we propose mixed finite element methods for the Reissner-Mindlin Plate Problem by introducing the bending moment as an independent variable. We apply the finite element approximations of the stress field and the displacement field constructed for the elasticity problem by Hu (J Comp Math 33: 283–296, 2015), Hu and Zhang (arXiv:1406.7457, 2014) to solve the bending moment and the rotation for the Reissner-Mindlin Plate Problem. We propose two triples of finite element spaces to approximate the bending moment, the rotation, and the displacement. The feature of these methods is that they need neither reduction terms nor penalty terms. Then, we prove the well-posedness of the discrete problem and obtain the optimal estimates independent of the plate thickness. Finally, we present some numerical examples to demonstrate the theoretical results.

Cite this article

Download citation ▾
Jun Hu, Xueqin Yang. Two Classes of Mixed Finite Element Methods for the Reissner-Mindlin Plate Problem. Communications on Applied Mathematics and Computation, 2024 https://doi.org/10.1007/s42967-024-00453-3
This is a preview of subscription content, contact us for subscripton.

References

[1.]
AmaraM, Capatina-PapaghiucD, ChattiA. New locking-free mixed method for the Reissner-Mindlin thin plate model. SIAM. J. Numer. Anal., 2002, 40: 1561-1582
CrossRef Google scholar
[2.]
AmaraM, ThomasJM. Equilibrium finite elements for the linear elastic problem. Numer. Math., 1979, 33: 367-383
CrossRef Google scholar
[3.]
ArnoldDN, BrezziF. Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RARIO Modél. Math. Anal. Numér., 1985, 19: 7-32
CrossRef Google scholar
[4.]
Arnold, D.N., Brezzi, F., Falk, R.S., Marini, L.D.: Locking-free Reissner-Mindlin elements without reduced integration. Comput. Methods Appl. Mech. Eng. 196, 3660–3671 (2007)
[5.]
Arnold, D.N., Brezzi, F., Marini, L.D.: A family of Discontinuous Galerkin finite elements for the Reissner-Mindlin plate. J. Sci. Comput. 22/23, 25–45(2005)
[6.]
Arnold, D.N., Falk, R.S.: A uniformly accurate finite element method for the Reissner-Mindlin plate. SIAM J. Numer. Anal. 26, 1276–1290 (1989)
[7.]
ArnoldDN, FalkRS. The boundary layer for the Reissner-Mindlin plate model. SIAM J. Numer. Anal., 1990, 21: 281-312
CrossRef Google scholar
[8.]
ArnoldDN, FalkRS, WintherR. Differential complexes and stability of finite element methods. I. The de Rham complex, in Compatible Spatial Discretizations. IMA Vol. Math. Appl., 2005, 142: 23-46
[9.]
ArnoldDN, FalkRS, WintherR. Piecewise polynomial differential forms and homological techniques in finite element theory. Acta Numer., 2006, 15: 1-155
CrossRef Google scholar
[10.]
Bathe, K.J., Brezzi, F.: A simplified analysis of two-plate bending elements—the MITC4 and MITC9 elements. In: Pande, G.G., Middleton, J. (eds.) Numerical Techniques for Engineering Analysis and Design, pp. 407–417. Springer, Netherlands (1987)
[11.]
Bathe, K.J., Dvorkin, E.: A four-node plate bending element based on Mindlin-Reissner plate theory and a mixed interpolation. Int. J. Numer. Methods Eng. 21, 367–383 (1985)
[12.]
Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics. Springer-Verlag, Berlin, Heidelberg (2013)
[13.]
Brezzi, F., Bathe, K.J., Fortin, M.: Mixed-interpolated elements for Reissner-Mindlin plates. Int. J. Numer. Methods Eng. 28, 1787–1801 (1989)
[14.]
Brezzi, F., Fortin, M.: Numerical approximation of Mindlin-Reissner plates. Math. Comp. 47, 151–158 (1986)
[15.]
Brezzi, F., Fortin, M.: Mixed and Hybird Finite Element Methods. Springer-Verlag, New York (1991)
[16.]
Behrens, E.M., Guzmán, J.: A new family of mixed methods for the Reissner-Mindlin plate model based on a system of first-order equations. J. Sci. Comput. 49, 137–166 (2011)
[17.]
Carstensen, C., Hu, J.: A posteriori error analysis for conforming MITC elements for Reissner-Mindlin plates. Math. Comp. 77, 611–632 (2008)
[18.]
ChenL, HuJ, HuangXH. Stabilized mixed finite element methods for linear elasticity on simplicial grids in Rn. Comput. Methods. Appl. Math., 2017, 17: 17-31
CrossRef Google scholar
[19.]
Chen, L., Hu, J., Huang, X.H.: Fast auxiliary space preconditioner for linear elasticity in mixed form. Math. Comput. 87, 1601–1633 (2018)
[20.]
Falk, R.S.: Finite elements for the Reissner-Mindlin plate. In: Boffi, D., Gastaldi, L. (eds) Mixed Finite Elements, Compatibility Conditions, and Applications. Lecture Notes in Mathematics, vol. 1939, pp. 195–232. Springer, Berlin, Heidelberg (2008)
[21.]
Gilbarg, D., Trudinger, N. S.: Elliptic Partial Differential Equations of Second Order. 2nd edition. Springer-Verlag, Berlin (1983)
[22.]
Grisvard, P.: Behavior of the solutions of an elliptic boundary value problem in a polygonal or polyhedral domain. In: Hubbard, B. (eds) Numerical Solution of Partial Differential Equations-III, pp. 207–274. Academic Press (1976)
[23.]
GuzmánJ. A unified analysis of several mixed methods for elasticity with weak stress symmetry. J. Sci. Comput., 2010, 44: 156-169
CrossRef Google scholar
[24.]
HuJ. Finite element approximations of symmetric tensors on simplicial grids in Rn: the higher order case. J. Comp. Math., 2015, 33: 283-296
CrossRef Google scholar
[25.]
HuJ. A new family of efficient conforming mixed finite elements on both rectangular and cuboid meshes for linear elasticity in the symmetric formulation. SIAM J. Numer. Anal., 2015, 53: 1438-1463
CrossRef Google scholar
[26.]
Hu, J., Man, H.Y., Wang, J.Y., Zhang, S.Y.: The simplest nonconforming mixed finite element method for linear elasticity in the symmetric formulation on n-rectangular grids. Comput. Math. Appl. 71, 1317–1336 (2016)
[27.]
Hu, J., Man, H.Y., Zhang, S.Y.: A simple conforming mixed finite element for linear elasticity on rectangular grids in any space dimension. J. Sci. Comput. 58, 367–379 (2014)
[28.]
Hu, J., Zhang, S.Y.: A family of conforming mixed finite elements for linear elasticity on triangular grids. arXiv:1406.7457 (2014)
[29.]
HuJ , ZhangSY. A family of conforming mixed finite elements for linear elasticity on tetrahedral grids. Sci. China Math., 2015, 58: 297-307
CrossRef Google scholar
[30.]
HuJ, ZhangSY. Finite element approximations of symmetric tensors on simplicial grids in Rn: the lower order case. Math. Model. Meth. Appl. Sci., 2016, 26: 1649-1669
CrossRef Google scholar
[31.]
ScottLR, ZhangS. Finite-element interpolation of non-smooth functions satisfying boundary conditions. Math. Comp., 1990, 54: 483-493
CrossRef Google scholar
[32.]
StenbergR. On the construction of optimal mixed finite element methods for the linear elasticity problem. Numer. Math., 1986, 48: 447-462
CrossRef Google scholar
Funding
NSFC(1)

18

Accesses

0

Citations

Detail

Sections
Recommended

/