Semi-implicit-Type Order-Adaptive CAT2 Schemes for Systems of Balance Laws with Relaxed Source Term

Emanuele Macca, Sebastiano Boscarino

Communications on Applied Mathematics and Computation ›› 2024

Communications on Applied Mathematics and Computation ›› 2024 DOI: 10.1007/s42967-024-00414-w
Original Paper

Semi-implicit-Type Order-Adaptive CAT2 Schemes for Systems of Balance Laws with Relaxed Source Term

Author information +
History +

Abstract

In this paper, we present two semi-implicit-type second-order compact approximate Taylor (CAT2) numerical schemes and blend them with a local a posteriori multi-dimensional optimal order detection (MOOD) paradigm to solve hyperbolic systems of balance laws with relaxed source terms. The resulting scheme presents the high accuracy when applied to smooth solutions, essentially non-oscillatory behavior for irregular ones, and offers a nearly fail-safe property in terms of ensuring the positivity. The numerical results obtained from a variety of test cases, including smooth and non-smooth well-prepared and unprepared initial conditions, assessing the appropriate behavior of the semi-implicit-type second order CATMOOD schemes. These results have been compared in the accuracy and the efficiency with a second-order semi-implicit Runge-Kutta (RK) method.

Cite this article

Download citation ▾
Emanuele Macca, Sebastiano Boscarino. Semi-implicit-Type Order-Adaptive CAT2 Schemes for Systems of Balance Laws with Relaxed Source Term. Communications on Applied Mathematics and Computation, 2024 https://doi.org/10.1007/s42967-024-00414-w

References

[1.]
BoscarinoS. Error analysis of IMEX Runge-Kutta methods derived from differential-algebraic systems. SIAM J. Numer. Anal., 2006, 45(4): 1600-1621
CrossRef Google scholar
[2.]
BoscarinoS, FilbetF, RussoG. High order semi-implicit schemes for time dependent partial differential equations. J. Sci. Comput., 2016, 68(8): 975-1001
CrossRef Google scholar
[3.]
BoscarinoS, PareschiL, RussoG. A unified IMEX Runge-Kutta approach for hyperbolic systems with multiscale relaxation. SIAM J. Numer. Anal., 2017, 55(4): 2085-2109
CrossRef Google scholar
[4.]
BroadwellJE. Shock structure in a simple discrete velocity gas. Phys. Fluids, 1964, 7(8): 1243-1247
CrossRef Google scholar
[5.]
CarrilloH, MaccaE, ParésC, RussoG. Well-balanced adaptive compact approximate Taylor methods for systems of balance laws. J. Comput. Phys., 2023, 478: 111979
CrossRef Google scholar
[6.]
CarrilloH, MaccaE, ParésC, RussoG, ZoríoD. An order-adaptive compact approximate Taylor method for systems of conservation law. J. Comput. Phys., 2021, 438: 31
CrossRef Google scholar
[7.]
CarrilloH, ParésC. Compact approximate Taylor methods for systems of conservation laws. J. Sci. Comput., 2019, 80: 1832-1866
CrossRef Google scholar
[8.]
CiarletPG. Discrete maximum principle for finite-difference operators. Aequ. Math., 1970, 4: 338-352
CrossRef Google scholar
[9.]
ClainS, DiotS, LoubèreR. A high-order finite volume method for systems of conservation laws—multi-dimensional optimal order detection (MOOD). J. Comput. Sci., 2011, 230(10): 4028-4050
[10.]
Clain, S., Diot, S., Loubère, R.: Multi-dimensional optimal order detection (MOOD)—a very high-order finite volume scheme for conservation laws on unstructured meshes. In: Springer Proceedings in Mathematics, vol. 4, pp. 263–271 (2011)
[11.]
CourantR, FriedrichsK, LewyH. Über die partiellen differenzengleichungen der mathematischen physik. Math. Ann., 1928, 100(1): 32-74
CrossRef Google scholar
[12.]
DiotS, ClainS, LoubèreR. Improved detection criteria for the multi-dimensional optimal order detection (MOOD) on unstructured meshes with very high-order polynomials. Comput. Fluids, 2012, 64: 43-63
CrossRef Google scholar
[13.]
DiotS, LoubèreR, ClainS. The MOOD method in the three-dimensional case: very-high-order finite volume method for hyperbolic systems. Int. J. Numer. Methods Fluids, 2013, 73: 362-392
CrossRef Google scholar
[14.]
Hundsdorfer, W., Verwer, J.: Numerical solution of time-dependent advection-diffusion-reaction equations. In: Springer Series in Computational Mathematics, SSCM, vol. 33 (2003)
[15.]
JinS. Runge-Kutta methods for hyperbolic conservation laws with stiff relaxation terms. J. Comput. Phys., 1995, 122(1): 51-67
CrossRef Google scholar
[16.]
Jin, S.: Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: a review. In: Lecture Notes for Summer School on Methods and Models of Kinetic Theory (M &MKT), Porto Ercole (Grosseto, Italy), pp. 177–216 (2010)
[17.]
LaxP, WendroffB. Systems of conservation laws. Commun. Pure Appl. Math., 1960, 13(2): 217-237
CrossRef Google scholar
[18.]
LeVequeRJ. Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems (Classics in Applied Mathematics), 2007 1 Philadelpia Society for Industrial and Applied Mathematics
CrossRef Google scholar
[19.]
Loubère, R., Macca, E., Parés, C., Russo, G.: CAT-MOOD methods for conservation laws in one space dimension. In: Parés, C., Castro, M.J., Muñoz, M.L., Morales de Luna, T., (eds.) Theory, Numerics and Applications of Hyperbolic Problems. SEMA-SIMAI Springer Series. Proceedings of HYP2022 (2024)
[20.]
Macca, E.: Shock-Capturing Methods: Well-Balanced Approximate Taylor and Semi-implicit Schemes. PhD thesis, Università degli Studi di Palermo, Palermo (2022)
[21.]
Macca, E., Avgerinos, S., Castro, M.J., Russo, G.: A semi-implicit finite volume method for the Exner model of sediment transport. J. Comput. Phys. 499, 112714 (2024)
[22.]
Macca, E., Loubere, R., Pares, C., Russo, G.: An almost fail-safe a-posteriori limited high-order CAT scheme. J. Comput. Phys. 498, 112650 (2024)
[23.]
Macca, E., Russo, G.: Boundary effects on wave trains in the Exner model of sedimental transport. Bollettino dell’ Unione Matematica Italiana 17(2), 417–433 (2024)
[24.]
MacCormack, R.W.: The effect of viscosity in hypervelocity impact cratering. AIAA Paper, Cincinnati, OH, pp. 69–354 (1969)
[25.]
PareschiL, RussoG. Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput., 2005, 25: 129-155
[26.]
Qiu, J., Shu, C.-W.: Finite difference WENO schemes with Lax-Wendroff-type time discretizations. SIAM J. Sci. Comput. 24(6), 2185–2198 (2003)
[27.]
Richtmyer, R.D., Morton, K.W.: Difference methods for initial-value problems. In: Interscience Tracts in Pure and Applied Mathematics. Interscience, New York (1967)
[28.]
SchwartzkopffT, MunzC, ToroE. ADER: a high-order approach for linear hyperbolic systems in 2D. J. Sci. Comput., 2002, 17: 231-240
CrossRef Google scholar
[29.]
Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. Technical report, Institute for Computer Applications in Science and Engineering (ICASE) (1997)
[30.]
TitarevV, ToroE. ADER: arbitrary high order Godunov approach. J. Sci. Comput., 2002, 17: 609-618
CrossRef Google scholar
[31.]
ToroEF. Riemann Solvers and Numerical Methods for Fluid Dynamics, 2009 3 Berlin Springer
CrossRef Google scholar
[32.]
WannerG, HairerE. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 1996 Berlin Springer
[33.]
ZoríoD, BaezaA, MuletP. An approximate Lax-Wendroff-type procedure for high order accurate scheme for hyperbolic conservation laws. J. Sci. Comput., 2017, 71(1): 246-273
CrossRef Google scholar
Funding
European Union’s NextGenerationUE(CUP E63C22001000006); Gruppo Nazionale per l’Analisi Matematica, la Probabilitá e le loro Applicazioni(CUP E53C22001930001); PRIN 2022(2022KA3JBA); PRIN 2022 PNRR(No. P2022BNB97)

Accesses

Citations

Detail

Sections
Recommended

/