Novel Quaternion Orthogonal Mountain Fourier Moments for Pattern Recognition Applications

Boujamaa Janati Idrissi, Yahya Sahmoudi, Omar El Ogri, Jaouad El-Mekkaoui

Communications on Applied Mathematics and Computation ›› DOI: 10.1007/s42967-024-00412-y
Original Paper

Novel Quaternion Orthogonal Mountain Fourier Moments for Pattern Recognition Applications

Author information +
History +

Abstract

Recent advances have been made in a wide range of imaging and pattern recognition applications, including picture categorization and object identification systems. These systems necessitate a robust feature extraction method. This study proposes a new class of orthogonal functions known as orthogonal mountain functions (OMFs). Using these functions, a novel set of orthogonal moments and associated scaling, rotation, and translation (SRT) invariants are presented for building a color image’s feature vector components. These orthogonal moments are presented as quaternion orthogonal mountain Fourier moments (QOMFMs). To demonstrate the validity of our theoretically recommended technique, we conduct a number of image analysis and pattern recognition experiments, including a comparison of the performance of the feature vectors proposed above to preexisting orthogonal invariant moments. The result of this study experimentally proves the effectiveness and quality of our QOMFMs.

Cite this article

Download citation ▾
Boujamaa Janati Idrissi, Yahya Sahmoudi, Omar El Ogri, Jaouad El-Mekkaoui. Novel Quaternion Orthogonal Mountain Fourier Moments for Pattern Recognition Applications. Communications on Applied Mathematics and Computation, https://doi.org/10.1007/s42967-024-00412-y

References

[1.]
Assefa D, Mansinha L, Tiampo KF, Rasmussen H, Abdella K. Local quaternion Fourier transform and color image texture analysis. Signal Process., 2010, 90(6): 1825-1835.
CrossRef Google scholar
[2.]
Chen B, et al. . Fractional quaternion Zernike moments for robust color image copy-move forgery detection. IEEE Access, 2018, 6: 56637-56646.
CrossRef Google scholar
[3.]
Choi M-S, Kim W-Y. A novel two stage template matching method for rotation and illumination invariance. Pattern Recogn., 2002, 35(1): 119-129.
CrossRef Google scholar
[4.]
El Ogri O, Daoui A, Yamni M, Karmouni H, Sayyouri M, Qjidaa H. 2D and 3D medical image analysis by discrete orthogonal moments. Procedia Comput. Sci., 2019, 148: 428-437.
CrossRef Google scholar
[5.]
Farida, Caraka, R.E., Cenggoro, T.W., Pardamean, B.: Batik Parang Rusak detection using geometric invariant moment. In: 2018 Indonesian Association for Pattern Recognition International Conference (INAPR). IEEE, pp. 71–74 (2018)
[6.]
Hjouji A, Bouikhalene B, EL-Mekkaoui J, Qjidaa H. New set of adapted Gegenbauer-Chebyshev invariant moments for image recognition and classification. J. Supercomput., 2021, 77: 5637-5667.
CrossRef Google scholar
[7.]
Hjouji A, Chakid R, El-Mekkaoui J, Qjidaa H, et al. . Adapted Jacobi orthogonal invariant moments for image representation and recognition. Circuits Syst Signal Process, 2021, 40: 2855-2882.
CrossRef Google scholar
[8.]
Hjouji, A., El-Mekkaoui, J., Qjidaa, H.: New set of non-separable 2D and 3D invariant moments for image representation and recognition. Multimedia Tools Appl. 80(8), 12309–12333 (2021)
[9.]
Hmimid A, Sayyouri M, Qjidaa H. Fast computation of separable two-dimensional discrete invariant moments for image classification. Pattern Recognit., 2015, 48: 509-521.
CrossRef Google scholar
[10.]
Hosny KM, et al. . Resilient color image watermarking using accurate quaternion radial substituted Chebyshev moments. ACM Trans. Multimed. Comput. Commun. Appl., 2019, 15(2): 1-25.
CrossRef Google scholar
[11.]
Hosny KM, et al. . New fractional-order Legendre-Fourier moments for pattern recognition applications. Pattern Recognit., 2020, 103,
CrossRef Google scholar
[12.]
Hosny KM. Robust template matching using orthogonal legendre moment invariants. J. Comput. Sci., 2010, 6(10): 1083.
CrossRef Google scholar
[13.]
Hosny KM, Shouman MA, Abdel-Salam HM. Fast computation of orthogonal Fourier-Mellin moments in polar coordinates. J. Real-Time Image Proc., 2011, 6: 73-80.
CrossRef Google scholar
[14.]
[15.]
[16.]
[17.]
Hu M-K. Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory, 1962, 8: 179-187.
CrossRef Google scholar
[18.]
Kanaya N, Liguni Y, Maeda H. 2-D DOA estimation method using Zernike moments. Signal Process., 2002, 82: 521-526.
CrossRef Google scholar
[19.]
Kantor IL, Solodovnikov AS, Shenitzer A Hypercomplex Numbers: an Elementary Introduction to Algebras, 1989 New York Springer,
CrossRef Google scholar
[20.]
Karmouni H, Jahid T, Sayyouri M, Hmimid A, Qjidaa H. Fast reconstruction of 3D images using Charlier discrete orthogonal moments. Circuits Syst. Signal Process., 2019, 38(8): 3715-3742.
CrossRef Google scholar
[21.]
Kim WY, Kim YS. A region-based shape descriptor using Zernike moments. Signal Process: Image Commun., 2000, 16: 95-102
[22.]
Lahouli I, Karakasis E, Haelterman R, Chtourou Z, Cubber GD, Gasteratos A, Attia R. Hot spot method for pedestrian detection using saliency maps, discrete Chebyshev moments and support vector machine. IET Image Process., 2018, 12: 1284-1291.
CrossRef Google scholar
[23.]
Liu Z, Wang H. A novel speech content authentication algorithm based on Bessel-Fourier moments. Digit. Signal Process., 2014, 24: 197-208,
CrossRef Google scholar
[24.]
Luo LM, Xie XH, Bao XD. A modified moment-based edge operator for rectangular pixel image. IEEE Trans. Circuits Syst. Video Technol., 1994, 4: 552-554.
CrossRef Google scholar
[25.]
Mandal MK, Aboulnasr T, Panchanathan S. Image indexing using moments and wavelets. IEEE Trans. Consum. Electron., 1996, 42(3): 557-565.
CrossRef Google scholar
[26.]
Singh C, Pooja N. Local and global features based image retrieval system using orthogonal radial moments. Opt. Lasers Eng., 2012, 50: 655-667.
CrossRef Google scholar
[27.]
Singh C, Singh J. Quaternion generalized Chebyshev-Fourier and pseudo-Jacobi-Fourier moments for color object recognition. Optics Laser Technol., 2018, 106: 234-250.
CrossRef Google scholar
[28.]
Suk, T., Flusser, J.: Refine moment invariants of color images. In: International Conference on Computer Analysis of Images and Patterns. Springer, Berlin, Heidelberg (2009)
[29.]
Teague MR. Image analysis via the general theory of moments. J. Opt. Soc. Am., 1980, 70: 920-930,
CrossRef Google scholar
[30.]
Wang C, Wang X, Xia Z, Ma B, Shi Y-Q. Image description with polar harmonic Fourier moments. IEEE Trans. Circuits Syst. Video Technol., 2019, 30(12): 4440-4452.
CrossRef Google scholar
[31.]
Wang X-Y, Li W-Y, Yang H-Y, Wang P, Li Y-W. Quaternion polar complex exponential transform for invariant color image description. Appl. Math. Comput., 2015, 256: 951-967
[32.]
Xiao B, Lu G, Zhang Y, Li W, Wang G. Lossless image compression based on integer Discrete Tchebichef Transform. Neurocomputing, 2016, 214: 587-593.
CrossRef Google scholar
[33.]
Xiao B, Li L, Li Y, Li W, Wang G. Image analysis by fractional-order orthogonal moments. Inf. Sci., 2017, 382/383: 135-149.
CrossRef Google scholar
[34.]
Xin Y, Pawlak M, Liao S. Accurate computation of Zernike moments in polar coordinates. IEEE Trans. Image Process., 2007, 16: 581-587,
CrossRef Google scholar
[35.]
Yang F, Ding M, Zhang X. Non-rigid multi-modal 3D medical image registration based on foveated modality independent neighborhood descriptor. Sensors, 2019, 19(21): 4675.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/