A Semi-implicit Finite Volume Scheme for Incompressible Two-Phase Flows

Davide Ferrari, Michael Dumbser

Communications on Applied Mathematics and Computation ›› 2024, Vol. 6 ›› Issue (4) : 2295-2330. DOI: 10.1007/s42967-024-00367-0
Original Paper

A Semi-implicit Finite Volume Scheme for Incompressible Two-Phase Flows

Author information +
History +

Abstract

This paper presents a mass and momentum conservative semi-implicit finite volume (FV) scheme for complex non-hydrostatic free surface flows, interacting with moving solid obstacles. A simplified incompressible Baer-Nunziato type model is considered for two-phase flows containing a liquid phase, a solid phase, and the surrounding void. According to the so-called diffuse interface approach, the different phases and consequently the void are described by means of a scalar volume fraction function for each phase. In our numerical scheme, the dynamics of the liquid phase and the motion of the solid are decoupled. The solid is assumed to be a moving rigid body, whose motion is prescribed. Only after the advection of the solid volume fraction, the dynamics of the liquid phase is considered. As usual in semi-implicit schemes, we employ staggered Cartesian control volumes and treat the nonlinear convective terms explicitly, while the pressure terms are treated implicitly. The non-conservative products arising in the transport equation for the solid volume fraction are treated by a path-conservative approach. The resulting semi-implicit FV discretization of the mass and momentum equations leads to a mildly nonlinear system for the pressure which can be efficiently solved with a nested Newton-type technique. The time step size is only limited by the velocities of the two phases contained in the domain, and not by the gravity wave speed nor by the stiff algebraic relaxation source term, which requires an implicit discretization. The resulting semi-implicit algorithm is first validated on a set of classical incompressible Navier-Stokes test problems and later also adds a fixed and moving solid phase.

Keywords

Staggered semi-implicit finite volume (FV) method / Incompressible two-phase flows / Diffuse interface approach / Incompressible free-surface Navier-Stokes equations / Violent non-hydrostatic flows / Fixed and moving solid obstacles

Cite this article

Download citation ▾
Davide Ferrari, Michael Dumbser. A Semi-implicit Finite Volume Scheme for Incompressible Two-Phase Flows. Communications on Applied Mathematics and Computation, 2024, 6(4): 2295‒2330 https://doi.org/10.1007/s42967-024-00367-0

References

[1.]
Abgrall R, Busto S, Dumbser M. A simple and general framework for the construction of thermodynamically compatible schemes for computational fluid and solid mechanics. Appl. Math. Comput., 2023, 440
[2.]
Andrianov N, Warnecke G. The Riemann problem for the Baer-Nunziato two-phase flow model. J. Comput. Phys., 2004, 212: 434-464
[3.]
Baer MR, Nunziato JW. A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. J. Multiph. Flow, 1986, 12: 861-889
[4.]
Bermúdez A, Busto S, Dumbser M, Ferrín J, Saavedra L, Vázquez-Cendón M. A staggered semi-implicit hybrid FV/FE projection method for weakly compressible flows. J. Comput. Phys., 2020, 421
[5.]
Blasius H. Grenzschichten in Flüssigkeiten mit kleiner Reibung. Z. Math. Physik, 1908, 56: 1-37
[6.]
Boscheri W, Dimarco G, Loubère R, Tavelli M, Vignal MH. A second order all Mach number IMEX finite volume solver for the three dimensional Euler equations. J. Comput. Phys., 2020, 415
[7.]
Boscheri W, Dumbser M, Ioriatti M, Peshkov I, Romenski E. A structure-preserving staggered semi-implicit finite volume scheme for continuum mechanics. J. Comput. Phys., 2010, 2021
[8.]
Boscheri W, Pareschi L. High order pressure-based semi-implicit IMEX schemes for the 3D Navier-Stokes equations at all Mach numbers. J. Comput. Phys., 2021, 434
[9.]
Brugnano L, Casulli V. Iterative solution of piecewise linear systems. SIAM J. Sci. Comput., 2007, 30: 463-472
[10.]
Brugnano L, Casulli V. Iterative solution of piecewise linear systems and applications to flows in porous media. SIAM J. Sci. Comput., 2009, 31: 1858-1873
[11.]
Busto S, Dumbser M. A new class of simple, general and efficient finite volume schemes for overdetermined thermodynamically compatible hyperbolic systems. Commun. Appl. Math. Comput., 2023,
CrossRef Google scholar
[12.]
Busto S, Dumbser M, Río-Martín L. Staggered semi-implicit hybrid finite volume/finite element schemes for turbulent and non-Newtonian flows. Mathematics, 2021, 9: 2972
[13.]
Busto S, Dumbser M, Río-Martín L. An arbitrary-Lagrangian-Eulerian hybrid finite volume/finite element method on moving unstructured meshes for the Navier-Stokes equations. Appl. Math. Comput., 2023, 437
[14.]
Busto S, Ferrín JL, Toro EF, Vázquez-Cendón ME. A projection hybrid high order finite volume/finite element method for incompressible turbulent flows. J. Comput. Phys., 2018, 353: 169-192
[15.]
Busto S, Río-Martín L, Vázquez-Cendón M, Dumbser M. A semi-implicit hybrid finite volume/finite element scheme for all Mach number flows on staggered unstructured meshes. Appl. Math. Comput., 2021, 402
[16.]
Castro MJ, Gallardo JM, Parés C. High-order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. Applications to shallow-water systems. Math. Comput., 2006, 75: 1103-1134
[17.]
Casulli V. A semi-implicit finite difference method for non-hydrostatic free-surface flows. Int. J. Numer. Methods Fluids, 1999, 30: 425-440
[18.]
Casulli V. A semi-implicit numerical method for the free-surface Navier-Stokes equations. Int. J. Numer. Methods Fluids, 2014, 74: 605-622
[19.]
Casulli V, Stelling GS. Semi-implicit subgrid modelling of three-dimensional free-surface flows. Int. J. Numer. Methods Fluids, 2011, 67: 441-449
[20.]
Casulli V, Zanolli P. A nested Newton-type algorithm for finite volume methods solving Richards’ equation in mixed form. SIAM J. Sci. Comput., 2009, 32: 2255-2273
[21.]
Casulli V, Zanolli P. Iterative solutions of mildly nonlinear systems. J. Comput. Appl. Math., 2012, 236: 3937-3947
[22.]
Chiocchetti S, Dumbser M. An exactly curl-free staggered semi-implicit finite volume scheme for a first order hyperbolic model of viscous flow with surface tension. J. Sci. Comput., 2023, 94: 24
[23.]
Dumbser M. A simple two-phase method for the simulation of complex free surface flows. Comput. Methods Appl. Mech. Eng., 2011, 200: 1204-1219
[24.]
Dumbser M, Balsara D, Tavelli M, Fambri F. A divergence-free semi-implicit finite volume scheme for ideal, viscous and resistive magnetohydrodynamics. Int. J. Numer. Methods Fluids, 2019, 89: 16-42
[25.]
Dumbser M, Boscheri W. High-order unstructured Lagrangian one-step WENO finite volume schemes for non-conservative hyperbolic systems: applications to compressible multi-phase flows. Comput. Fluids, 2013, 86: 405-432
[26.]
Dumbser M, Casulli V. A conservative, weakly nonlinear semi-implicit finite volume method for the compressible Navier-Stokes equations with general equation of state. Appl. Math. Comput., 2016, 272: 479-497
[27.]
Dumbser M, Hidalgo A, Castro M, Parés C, Toro EF. Force schemes on unstructured meshes II: non-conservative hyperbolic systems. Comput. Methods Appl. Mech. Eng., 2010, 199: 625-647
[28.]
Dumbser M, Zanotti O, Loubère R, Diot S. A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws. J. Comput. Phys., 2014, 278: 47-75
[29.]
Faltinsen O, Rognebakke O, Lukovsky I, Timokha A. Adaptive multimodal approach to nonlinear sloshing in a rectangular tank. J. Fluid Mech., 2000, 407: 201-234
[30.]
Fambri F, Dumbser M. Spectral semi-implicit and space-time discontinuous Galerkin methods for the incompressible Navier-Stokes equations on staggered Cartesian grids. Appl. Numer. Math., 2016, 110: 41-74
[31.]
Fambri, F., Dumbser, M.: Semi-implicit discontinuous Galerkin methods for the incompressible Navier-Stokes equations on adaptive staggered Cartesian grids. Comput. Methods Appl. Mech. Eng. 324, 170–203. arXiv:1612.09558 (2017)
[32.]
Favrie N, Gavrilyuk S. Diffuse interface model for compressible fluid-compressible elastic-plastic solid interaction. J. Comput. Phys., 2012, 231: 2695-2723
[33.]
Favrie N, Gavrilyuk S, Saurel R. Solid-fluid diffuse interface model in cases of extreme deformations. J. Comput. Phys., 2009, 228: 6037-6077
[34.]
Ferrari D, Dumbser M. A mass and momentum-conservative semi-implicit finite volume scheme for complex nonhydrostatic free surface flows. Int. J. Numer. Methods Fluids, 2021, 93: 2946-2967
[35.]
Gaburro E, Castro M, Dumbser M. A well balanced diffuse interface method for complex nonhydrostatic free surface flows. Comput. Fluids, 2018, 175: 180-198
[36.]
Ghia U, Ghia KN, Shin CT. High-Re solutions for incompressible flow using Navier-Stokes equations and multigrid method. J. Comput. Phys., 1982, 48: 387-411
[37.]
Kemm F, Gaburro E, Thein F, Dumbser M. A simple diffuse interface approach for compressible flows around moving solids of arbitrary shape based on a reduced Baer-Nunziato model. Comput. Fluids, 2020, 204
[38.]
Lukácová-Medvidóvá M, Puppo G, Thomann A. An all Mach number finite volume method for isentropic two-phase flow. J. Numer. Math., 2023, 31: 175-204
[39.]
Ndanou S, Favrie N, Gavrilyuk S. Multi-solid and multi-fluid diffuse interface model: applications to dynamic fracture and fragmentation. J. Comput. Phys., 2015, 295: 523-555
[40.]
Oger G, Doring M, Alessandrini B, Ferrant P. Two-dimensional SPH simulations of wedge water entries. J. Comput. Phys., 2006, 213: 803-822
[41.]
Parés C. Numerical methods for nonconservative hyperbolic systems: a theoretical framework. SIAM J. Numer. Anal., 2006, 44: 300-321
[42.]
Park J, Munz C. Multiple pressure variables methods for fluid flow at all Mach numbers. Int. J. Numer. Methods Fluids, 2005, 49: 905-931
[43.]
Prandtl, L.: Über Flüssigkeitsbewegung bei sehr kleiner Reibung. In: Verhandlg. III. Intern. Math. Kongr. Heidelberg, pp. 484–491 (1904)
[44.]
Re B, Abgrall R. A pressure-based method for weakly compressible two-phase flows under a Baer-Nunziato type model with generic equations of state and pressure and velocity disequilibrium. Int. J. Numer. Methods Fluids, 2022, 94: 1183-1232
[45.]
Saurel R, Abgrall R. A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys., 1999, 150: 425-467
[46.]
Schlichting, H., Gersten, K.: Grenzschicht-Theorie. Springer, Berlin, Heidelberg (2006)
[47.]
Schwendeman DW, Wahle CW, Kapila AK. The Riemann problem and a high-resolution Godunov method for a model of compressible two-phase flow. J. Comput. Phys., 2006, 212: 490-526
[48.]
Shao J, Li H, Liu G, Liu M. An improved SPH method for modeling liquid sloshing dynamics. Comput. Struct., 2012, 100/101: 18-26
[49.]
Tavelli M, Dumbser M. A staggered semi-implicit discontinuous Galerkin method for the two dimensional incompressible Navier-Stokes equations. Appl. Math. Comput., 2014, 248: 70-92
[50.]
Tavelli M, Dumbser M. A staggered space-time discontinuous Galerkin method for the three-dimensional incompressible Navier-Stokes equations on unstructured tetrahedral meshes. J. Comput. Phys., 2016, 319: 294-323
[51.]
Tavelli M, Dumbser M. A pressure-based semi-implicit space-time discontinuous Galerkin method on staggered unstructured meshes for the solution of the compressible Navier-Stokes equations at all Mach numbers. J. Comput. Phys., 2017, 341: 341-376
[52.]
Tavelli M, Dumbser M. Arbitrary high order accurate space-time discontinuous Galerkin finite element schemes on staggered unstructured meshes for linear elasticity. J. Comput. Phys., 2018, 366: 386-414
[53.]
Thomann A, Dumbser M. Thermodynamically compatible discretization of a compressible two-fluid model with two entropy inequalities. J. Sci. Comput., 2023, 97: 9
[54.]
Thomann A, Puppo G, Klingenberg C. An all speed second order well-balanced IMEX relaxation scheme for the Euler equations with gravity. J. Comput. Phys., 2020, 420
[55.]
Thomann A, Zenk M, Puppo G, Klingenberg C. An all speed second order IMEX relaxation scheme for the Euler equations. Commun. Comput. Phys., 2020, 28: 591-620
[56.]
Toro EF. . Riemann Solvers and Numerical Methods for Fluid Dynamics, 2009 Berlin Springer
[57.]
Toro EF, Vázquez-Cendón ME. Flux splitting schemes for the Euler equations. Comput. Fluids, 2012, 70: 1-12
[58.]
Williamson C, Brown GL. A series in 1/ Re to represent the Strouhal-Reynolds number relationship of the cylinder wake. J. Fluids Struct., 1998, 12: 1073-1089
[59.]
Zhao, R., Faltinsen, O., Aarsnes, J.: Water entry of arbitrary two-dimensional sections with and without flow separation. In: Proceedings of the 21st Symposium on Naval Hydrodynamics (1997)
Funding
Ministero dell’Istruzione, dell’Università e della Ricerca(PRIN 2022); European Commission(L. 232/2016); Università degli Studi di Trento

Accesses

Citations

Detail

Sections
Recommended

/