PDF
Abstract
Strong \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathcal {H}}$$\end{document}
-tensors play a significant role in identifying the positive definiteness of an even-order real symmetric tensor. In this paper, first, an improved iterative algorithm is proposed to determine whether a given tensor is a strong \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathcal {H}}$$\end{document}
-tensor, and the validity of the iterative algorithm is proved theoretically. Second, the iterative algorithm is employed to identify the positive definiteness of an even-order real symmetric tensor. Finally, numerical examples are presented to illustrate the advantages of the proposed algorithm.
Keywords
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathcal {H}}$$\end{document}
-tensors')">Strong \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathcal {H}}$$\end{document}
-tensors
/
Iterative algorithm
/
Positive diagonal matrix
/
Symmetric tensors
Cite this article
Download citation ▾
Wenbin Gong, Yan Li, Yaqiang Wang.
An Improved Iterative Algorithm for Identifying Strong
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathcal {H}}$$\end{document}
-Tensors.
Communications on Applied Mathematics and Computation, 2024, 7(4): 1598-1614 DOI:10.1007/s42967-023-00362-x
| [1] |
AndersonBD, BoseNK. Output feedback stabilization and related problems solution via decision methods. IEEE Trans. Automat. Control., 1975, 20153-66.
|
| [2] |
BoseNK, KamatPS. Algorithm for stability test of multidimensional filters. IEEE Trans. Acoust. Speech Signal Process., 1974, 225307-314.
|
| [3] |
BoseNK, NewcombRW. Tellegen’s theorem and multivariable realizability theory. Int. J. Electron., 1974, 363417-425.
|
| [4] |
ChangKC, PearsonK, ZhangT. Perron-Frobenius theorem for nonnegative tensors. Commun. Math. Sci., 2008, 6: 507-520.
|
| [5] |
CuiJJ, PengGH, LuQ, HuangZG. New iterative criteria for strong H\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathcal{H} }$$\end{document}-tensors and an application. Jinequal Appl., 2017, 49: 2-14
|
| [6] |
DingWY, QiLQ, WeiYM. M\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathcal{M} }$$\end{document}-tensors and nonsingular M\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathcal{M} }$$\end{document}-tensors. Linear Algebra Appl., 2013, 439: 3264-3278.
|
| [7] |
DingWY, WeiYM. Solving multilinear systems with M\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathcal{M} }$$\end{document}-tensors. J. Sci. Comput., 2016, 682689-715.
|
| [8] |
GongWB, WangYQ. Some new criteria for judging H\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathcal{H} }$$\end{document}-tensor and their applications. AIMS Mathematics., 2023, 8: 7606-7617.
|
| [9] |
KannanMR, Shaked-MondererN, BermanA. Some properties of strong H\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathcal{H} }$$\end{document}-tensors and general H\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathcal{H} }$$\end{document}-tensors. Linear Algebra Appl., 2015, 476: 42-55.
|
| [10] |
Li, C.Q., Li, Y.T.: Double B-tensors and quasi-double B-tensors. Linear Algebra Appl. 466, 343–356 (2015)
|
| [11] |
LiCQ, LiYT, XuK. New eigenvalue inclusion sets for tensor. Numer. Algebra App., 2014, 21: 39-50.
|
| [12] |
LiCQ, WangF, ZhaoJX, LiYT. Criterions for the positive definiteness of real supersymmetric tensors. J. Comput. Appl. Math., 2014, 255: 1-14.
|
| [13] |
LiG, ZhangYC, FengY. Criteria for nonsingular H\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathcal{H} }$$\end{document}-tensors. Adv. Appl. Math., 2018, 3: 66-71
|
| [14] |
LiYT, LiuQL, QiLQ. Programmable criteria for strong H\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathcal{H} }$$\end{document}-tensors. Numer. Algorithms., 2017, 74: 199-211.
|
| [15] |
LiuQL, LiCQ, LiYT, et al. . On the iterative criterion for strong H\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathcal{H} }$$\end{document}-tensors. Comput. Appl. Math., 2017, 36: 1623-1635.
|
| [16] |
LiuQL, ZhaoJX, LiCQ, et al. . An iterative algorithm based on strong H\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathcal{H} }$$\end{document}-tensors for identifying positive definiteness of irreducible homogeneous polynomial forms. J. Comput. Appl. Math., 2020, 369: 112581.
|
| [17] |
QiLQ. Eigenvalues of a real supersymmetric tensor. J. Symb. Comput., 2005, 40: 1302-1324.
|
| [18] |
QiLQ, SongYS. An even order symmetric B-tensor is positive definite. Linear Algebra Appl., 2014, 457: 303-312.
|
| [19] |
QiLQ, YuGH, XuY. Nonnegative diffusion orientation distribution function. J. Math. Imaging Vis., 2013, 45: 103-113.
|
| [20] |
ShaoJY. A general product of tensors with applications. Linear Algebra Appl., 2013, 439: 2350-2366.
|
| [21] |
SigmundK, HofbauerJ. Evolutionary game dynamics. B. Am. Math. Soc., 2003, 40: 479-519.
|
| [22] |
SunDS, BaiDJ. New criteria-based H\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathcal{H} }$$\end{document}-tensors for identifying the positive definiteness of multivariate homogeneous forms. Open Math., 2021, 19: 551-561.
|
| [23] |
VidyasagarM, DesoerCA. Nonlinear Systems Analysis. TSMC., 1978, 428537-538
|
| [24] |
WangF, SunDS. New criteria for H\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathcal{H} }$$\end{document}-tensors and an application. J. Inequal. Appl., 2016, 96: 1-11
|
| [25] |
WangF, SunDS, XuYM. Some criteria for identifying H\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathcal{H} }$$\end{document}-tensors and its applications. Calcolo., 2019, 56: 2-18.
|
| [26] |
WangF, SunDS, ZhaoJX, LiCQ. New practical criteria for H\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathcal{H} }$$\end{document}-tensors and its application. Linear Multilinear A., 2017, 65: 269-283.
|
| [27] |
WangG, TanF. Some Criteria for H\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathcal{H} }$$\end{document}-Tensors. CAMC., 2020, 2: 1-11
|
| [28] |
WangXZ, CheML, WeiYM. Existence and uniqueness of positive solution for H+\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathcal{H} }^+$$\end{document}-tensor equations. Appl. Math. Lett., 2019, 98: 191-198.
|
| [29] |
Wang, Y.J., Zhou, G.L., Caccetta, L.: Nonsingular H\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathcal{H} }$$\end{document}-tensor and its criteria. J. Ind. Manag. Optim. 2016, 1173–1186
|
| [30] |
Wei, Y.M., Ding, W.Y.: Theory and Computation of Tensors: Multi-dimensional Arrays. Elsevier Science, San Diego (2016)
|
| [31] |
XuYY, ZhaoRJ, ZhengB. Some criteria for identifying strong H\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathcal{H} }$$\end{document}-tensors. Numer. Algorithms., 2019, 80: 1121-1141.
|
| [32] |
YangYN, YangQZ. Further results for Perron-Frobenius theorem for nonnegative tensors. SIAM. J. Matrix Anal. Appl., 2010, 31: 2517-2530.
|
| [33] |
ZhangKL, WangYJ. An H\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathcal{H} }$$\end{document}-tensor based iterative scheme for identifying the positive definiteness of multivariate homogeneous forms. J. Comput. Appl. Math., 2016, 305: 1-10.
|
| [34] |
ZhaoRJ, GaoL, LiuQL, LiYT. Criterions for identifying H\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathcal{H} }$$\end{document}-tensors. Front. Math. China, 2016, 1111660-678
|
Funding
Natural Science Basic Research Program of Shaanxi, China(2020JM-622)
RIGHTS & PERMISSIONS
Shanghai University