Efficient Alternative Finite Difference WENO Schemes for Hyperbolic Conservation Laws

Dinshaw S. Balsara , Deepak Bhoriya , Chi-Wang Shu , Harish Kumar

Communications on Applied Mathematics and Computation ›› 2025, Vol. 7 ›› Issue (6) : 2189 -2242.

PDF
Communications on Applied Mathematics and Computation ›› 2025, Vol. 7 ›› Issue (6) :2189 -2242. DOI: 10.1007/s42967-023-00360-z
Original Paper
research-article

Efficient Alternative Finite Difference WENO Schemes for Hyperbolic Conservation Laws

Author information +
History +
PDF

Abstract

Higher order finite difference Weighted Essentially Non-Oscillatory (FD-WENO) schemes for conservation laws are extremely popular because, for multidimensional problems, they offer high order accuracy at a fraction of the cost of finite volume WENO or DG schemes. Such schemes come in two formulations. The very popular classical FD-WENO method (Shu and Osher J Comput Phys 83: 32–78, 1989) relies on two reconstruction steps applied to two split fluxes. However, the method cannot accommodate different types of Riemann solvers and cannot preserve free stream boundary conditions on curvilinear meshes. This limits its utility. The alternative FD-WENO (AFD-WENO) method can overcome these deficiencies, however, much less work has been done on this method. The reasons are three-fold. First, it is difficult for the casual reader to understand the intricate logic that requires higher order derivatives of the fluxes to be evaluated at zone boundaries. The analytical methods for deriving the update equation for AFD-WENO schemes are somewhat recondite. To overcome that difficulty, we provide an easily accessible script that is based on a computer algebra system in Appendix A of this paper. Second, the method relies on interpolation rather than reconstruction, and WENO interpolation formulae have not been documented in the literature as thoroughly as WENO reconstruction formulae. In this paper, we explicitly provide all necessary WENO interpolation formulae that are needed for implementing the AFD-WENO up to the ninth order. The third reason is that the AFD-WENO requires higher order derivatives of the fluxes to be available at zone boundaries. Since those derivatives are usually obtained by finite differencing the zone-centered fluxes, they become susceptible to a Gibbs phenomenon when the solution is non-smooth. The inclusion of those fluxes is also crucially important for preserving the order property when the solution is smooth. This has limited the utility of the AFD-WENO in the past even though the method per se has many desirable features. Some efforts to mitigate the effect of finite differencing of the fluxes have been tried, but so far they have been done on a case by case basis for the PDE being considered. In this paper we find a general-purpose strategy that is based on a different type of the WENO interpolation. This new WENO interpolation takes the first derivatives of the fluxes at zone centers as its inputs and returns the requisite non-linearly hybridized higher order derivatives of flux-like terms at the zone boundaries as its output. With these three advances, we find that the AFD-WENO becomes a robust and general-purpose solution strategy for large classes of conservation laws. It allows any Riemann solver to be used. The AFD-WENO has a computational complexity that is entirely comparable to the classical FD-WENO, because it relies on two interpolation steps which cost the same as the two reconstruction steps in the classical FD-WENO. We apply the method to several stringent test problems drawn from Euler flow, relativistic hydrodynamics (RHD), and ten-moment equations. The method meets its design accuracy for smooth flow and can handle stringent problems in one and multiple dimensions.

Keywords

Hyperbolic PDEs / Numerical schemes / Conservation laws / Finite difference Weighted Essentially Non-Oscillatory (FD-WENO) / 65M06 / 65M22 / 65N06 / 35Q35 / 76T10 / 76M20

Cite this article

Download citation ▾
Dinshaw S. Balsara, Deepak Bhoriya, Chi-Wang Shu, Harish Kumar. Efficient Alternative Finite Difference WENO Schemes for Hyperbolic Conservation Laws. Communications on Applied Mathematics and Computation, 2025, 7(6): 2189-2242 DOI:10.1007/s42967-023-00360-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anile AM. Relativistic Fluids and Magneto-Fluids: with Applications in Astrophysics and Plasma Physics, 1989, Cambridge, Cambridge University Press

[2]

Arbogast T, Huang C-S, Zhao X. Accuracy of WENO and adaptive order WENO reconstructions for solving conservation laws. SIAM J. Numer. Anal., 2018, 56(3): 1818-1847

[3]

Balsara DS. Total variation diminishing algorithm for adiabatic and isothermal magnetohydrodynamics. Astrophys. J. Suppl., 1998, 116: 133-153

[4]

Balsara DS. Second order accurate schemes for magnetohydrodynamics with divergence-free reconstruction. Astrophys. J. Suppl., 2004, 151(1): 149-184

[5]

Balsara DS. Self-adjusting, positivity preserving high order schemes for hydrodynamics and magnetohydrodynamics. J. Comput. Phys., 2012, 231: 7504-7517

[6]

Balsara DS, Bhoriya D, Shu C-W, Kumar H. Efficient finite difference WENO scheme for hyperbolic systems with non-conservative products. Commun. Appl. Math. Comput., 2023

[7]

Balsara DS, Garain S, Florinski V, Boscheri W. An efficient class of WENO schemes with adaptive order for unstructured meshes. J. Comput. Phys., 2020, 404109062

[8]

Balsara DS, Garain S, Shu C-W. An efficient class of WENO schemes with adaptive order. J. Comput. Phys., 2016, 326: 780-804

[9]

Balsara DS, Kim J. A subluminal relativistic magnetohydrodynamics scheme with ADER-WENO predictor and multidimensional Riemann solver-based corrector. J. Comput. Phys., 2016, 312: 357-384

[10]

Balsara DS, Rumpf T, Dumbser M, Munz C-D. Efficient, high-accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydrodynamics. J. Comput. Phys., 2009, 228: 2480

[11]

Balsara DS, Samantaray S, Subramanian S. Efficient WENO-based prolongation strategies for divergence-preserving vector fields. Commun. Appl. Math. Comput., 2022, 5(1): 428-484

[12]

Balsara DS, Shu C-W. Monotonicity preserving weighted non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys., 2000, 160: 405-452

[13]

Berberich JP, Käppeli R, Chandrashekar P, Klingenberg C. High order discretely well-balanced methods for arbitrary hydrostatic atmospheres. Commun. Comput. Phys., 2021, 30(3666-708

[14]

Bhoriya D, Kumar H. Entropy-stable schemes for relativistic hydrodynamics equations. Z. Angew. Math. Phys., 2020, 71: 1-29

[15]

Biswas B, Kumar H, Bhoriya D. Entropy stable discontinuous Galerkin schemes for the special relativistic hydrodynamics equations. Comput. Math. Appl., 2022, 112: 55-75

[16]

Biswas B, Kumar H, Yadav A. Entropy stable discontinuous Galerkin methods for ten-moment Gaussian closure equations. J. Comput. Phys., 2021, 431110148

[17]

Borges R, Carmona M, Costa B, Don WS. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys., 2008, 227(6): 3101-3211

[18]

Boscheri W, Balsara DS. High order direct arbitrary-Lagrangian-Eulerian (ALE) PNPM\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${P_N}{P_M}$$\end{document} schemes on unstructured meshes. J. Comput. Phys., 2019, 398: 108899

[19]

Carlini E, Ferretti R, Russo G. A weighted essentially nonoscillatory, large time-step scheme for Hamilton-Jacobi equations. SIAM J. Sci. Comput., 2005, 27: 1071-1091

[20]

Castro M, Costa B, Don WS. High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws. J. Comput. Phys., 2011, 230: 1766-1792

[21]

Colella P, Woodward PR. The piecewise parabolic method (PPM) for gas-dynamical simulations. J. Comput. Phys., 1984, 54(1): 174-201

[22]

Cravero I, Semplice M. On the accuracy of WENO and CWENO reconstructions of third order on nonuniform meshes. J. Sci. Comput., 2016, 67(3): 1219-1246

[23]

Duan JM, Tang HZ. High-order accurate entropy stable finite difference schemes for one- and two-dimensional special relativistic hydrodynamics. Adv. Appl. Math. Mech., 2019, 12(1): 1-29

[24]

Dumbser M, Balsara DS. A new efficient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems. J. Comput. Phys., 2016, 304: 275-319

[25]

Gao Z, Fang L-L, Wang B-S, Wang Y, Don WS. Seventh and ninth orders characteristic-wise alternative WENO finite difference schemes for hyperbolic conservation laws. Comput. Fluids, 2020, 202104519

[26]

Gerolymos GA, Sénéchal D, Vallet I. Very high order WENO schemes. J. Comput. Phys., 2009, 228: 8481-8524

[27]

Grosheintz-Laval L, Käppeli R. Well-balanced finite volume schemes for nearly steady adiabatic flows. J. Comput. Phys., 2020, 423109805

[28]

Harten A, Engquist B, Osher S, Chakravarthy S. Uniformly high order essentially non-oscillatory schemes III. J. Comput. Phys., 1987, 71: 231-303

[29]

He P, Tang H. An adaptive moving mesh method for two-dimensional relativistic hydrodynamics. Commun. Comput. Phys., 2012, 11(1): 114-146

[30]

Henrick AK, Aslam TD, Powers JM. Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. J. Comput. Phys., 2006, 207: 542-567

[31]

Jiang G-S, Shu C-W. Efficient implementation of weighted ENO schemes. J. Comput. Phys., 1996, 126: 202-228

[32]

Jiang Y, Shu C-W, Zhang M. An alternative formulation of finite difference ENO schemes with Lax-Wendroff time discretization for conservation laws. SIAM J. Sci. Comput., 2013, 35(2): A1137-A1160

[33]

Jiang Y, Shu C-W, Zhang M. Free-stream preserving finite-difference schemes on curvilinear meshes. Methods Appl. Anal., 2014, 21(1): 001-030

[34]

Käppeli R. Well-balanced methods for computational astrophysics. Living Rev. Comput. Astrophys., 2022, 8(2): 1-88

[35]

Käppeli R, Mishra S. Well-balanced schemes for the Euler equations with gravitation. J. Comput. Phys., 2014, 259: 199-219

[36]

Kumar R, Chandrashekar P. Simple smoothness indicator and multi-level adaptive order WENO scheme for hyperbolic conservation laws. J. Comput. Phys., 2018, 375: 1059-1090

[37]

Kumar R, Chandrashekar P. Efficient seventh order WENO schemes of adaptive order for hyperbolic conservation laws. Comput. Fluids, 2019, 190: 49-76

[38]

Kupka F, Happenhofer N, Higueras I, Koch O. Total-variation-diminishing implicit-explicit Runge-Kutta methods for the simulation of double-diffusive convection in astrophysics. J. Comput. Phys., 2012, 231: 3561-3586

[39]

Lax PD. Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun. Pure Appl. Math., 1954, 7(1): 159-193

[40]

Levy D, Puppo G, Russo G. Compact central WENO schemes for multidimensional conservation laws. SIAM J. Sci. Comput., 2000, 22: 656-672

[41]

Ling D, Duan JM, Tang HZ. Physical-constraints-preserving Lagrangian finite volume schemes for one- and two-dimensional special relativistic hydrodynamics. J. Comput. Phys., 2019, 396: 507-543

[42]

Liska R, Wendroff B. Comparison of several difference schemes on 1D and 2D test problems for the Euler equations. SIAM J. Sci. Comput., 2003, 25(3): 995-1017

[43]

Liu X-D, Osher S, Chan T. Weighted essentially non-oscillatory schemes. J. Comput. Phys., 1994, 115: 200-212

[44]

Martí MJ, Müller E. Numerical hydrodynamics in special relativity. Living Rev. Relat., 2003, 6(1): 7

[45]

Meena AK, Kumar H, Chandrashekar P. Positivity-preserving high-order discontinuous Galerkin schemes for ten-moment Gaussian closure equations. J. Comput. Phys., 2017, 339: 370-395

[46]

Merriman B. Understanding the Shu-Osher conservative finite difference form. J. Sci. Comput., 2003, 19(1/2/3309

[47]

Mignone A, Bodo G. An HLLC Riemann solver for relativistic flows I. Hydrodynamics. Mon. Notices R. Astron. Soc., 2005, 364(1126-136

[48]

Pao, S.P., Salas, M.D.: A numerical study of two-dimensional shock-vortex interaction. In: 14th Fluid and Plasma Dynamics Conference, AIAA 81-1205 (1981)

[49]

Pareschi L, Russo G. Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput., 2005, 25: 129

[50]

Sebastian K, Shu C-W. Multidomain WENO finite difference method with interpolation at sub-domain interfaces. J. Sci. Comput., 2003, 19: 405-438

[51]

Semplice M, Coco A, Russo G. Adaptive mesh refinement for hyperbolic systems based on third-order compact WENO reconstruction. J. Sci. Comput., 2016, 66(2): 692-724

[52]

Sen C, Kumar H. Entropy stable schemes for ten-moment Gaussian closure equations. J. Sci. Comput., 2018, 75(2): 1128-1155

[53]

Shu C-W. High order weighted essentially non-oscillatory schemes for convection dominated problems. SIAM Rev., 2009, 51: 82-126

[54]

Shu C-W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes. Acta Numer., 2020, 29: 701-762

[55]

Shu C-W, Osher SJ. Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comput. Phys., 1988, 77: 439-471

[56]

Shu C-W, Osher SJ. Efficient implementation of essentially non-oscillatory shock capturing schemes II. J. Comput. Phys., 1989, 83: 32-78

[57]

Sod GA. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys., 1978, 27(1): 1-31

[58]

Spiteri RJ, Ruuth SJ. A new class of optimal high-order strong-stability-preserving time-stepping schemes. SIAM J. Numer. Anal., 2002, 40: 469-491

[59]

Spiteri RJ, Ruuth SJ. Non-linear evolution using optimal fourth-order strong-stability-preserving Runge-Kutta methods. Math. Comput. Simul., 2003, 62: 125-135

[60]

Woodward P, Colella P. The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys., 1984, 54: 115-173

[61]

Zheng F, Shu C-W, Qiu J. A high order conservative finite difference scheme for compressible two-medium flows. J. Comput. Phys., 2021, 445110597

[62]

Zhu J, Qiu J. A new fifth order finite difference WENO scheme for solving hyperbolic conservation laws. J. Comput. Phys., 2016, 318: 110-121

[63]

Zhu J, Shu C-W. A new type of multi-resolution WENO schemes with increasingly higher order of accuracy. J. Comput. Phys., 2018, 375: 659-683

Funding

National Science Foundation(NSF-AST-2009776)

National Aeronautics and Space Administration(NASA-2020-1241)

Department of Science and Technology, Government of Rajasthan(VJR/2018/00129)

University of Notre Dame(Travel Grant)

RIGHTS & PERMISSIONS

Shanghai University

PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

/