High Order ADER-IPDG Methods for the Unsteady Advection-Diffusion Equation

Michel Bergmann, Afaf Bouharguane, Angelo Iollo, Alexis Tardieu

Communications on Applied Mathematics and Computation ›› 2024, Vol. 6 ›› Issue (3) : 1954-1977. DOI: 10.1007/s42967-023-00355-w
Original Paper

High Order ADER-IPDG Methods for the Unsteady Advection-Diffusion Equation

Author information +
History +

Abstract

We present a high-order Galerkin method in both space and time for the 1D unsteady linear advection-diffusion equation. Three Interior Penalty Discontinuous Galerkin (IPDG) schemes are detailed for the space discretization, while the time integration is performed at the same order of accuracy thanks to an Arbitrary high order DERivatives (ADER) method. The orders of convergence of the three ADER-IPDG methods are carefully examined through numerical illustrations, showing that the approach is consistent, accurate, and efficient. The numerical results indicate that the symmetric version of IPDG is typically more accurate and more efficient compared to the other approaches.

Keywords

Advection-diffusion / Galerkin / Arbitrary high order DERivatives (ADER) approach / Interior Penalty Discontinuous Galerkin (IPDG) / High-order schemes / Empirical convergence rates

Cite this article

Download citation ▾
Michel Bergmann, Afaf Bouharguane, Angelo Iollo, Alexis Tardieu. High Order ADER-IPDG Methods for the Unsteady Advection-Diffusion Equation. Communications on Applied Mathematics and Computation, 2024, 6(3): 1954‒1977 https://doi.org/10.1007/s42967-023-00355-w

References

[1.]
Abgrall R. Residual distribution schemes: current status and future trends. Comput. Fluids, 2006, 35(7): 641-669,
CrossRef Google scholar
[2.]
Baldassari, C.: Modélisation et simulation numérique pour la migration terrestre par équation d’ondes. Theses, Université de Pau et des Pays de l’Adour (2009). https://theses.hal.science/tel-00472810
[3.]
Bergmann M, Carlino MG, Iollo A. Second order ADER scheme for unsteady advection-diffusion on moving overset grids with a compact transmission condition. SIAM J. Sci. Comput., 2022, 44(1): 524-553,
CrossRef Google scholar
[4.]
Bergmann M, Carlino MG, Iollo A, Telib H. ADER scheme for incompressible Navier-Stokes equations on overset grids with a compact transmission condition. J. Comput. Phys., 2022, 467,
CrossRef Google scholar
[5.]
Bergmann M, Fondanèche A, Iollo A. An Eulerian finite-volume approach of fluid-structure interaction problems on quadtree meshes. J. Comput. Phys., 2022, 471,
CrossRef Google scholar
[6.]
Boscheri W, Dumbser M. Arbitrary-Lagrangian-Eulerian discontinuous Galerkin schemes with a posteriori subcell finite volume limiting on moving unstructured meshes. J. Comput. Phys., 2017, 346: 449-479,
CrossRef Google scholar
[7.]
Boscheri W, Loubère R. High order accurate direct arbitrary-Lagrangian-Eulerian ADER-MOOD finite volume schemes for non-conservative hyperbolic systems with stiff source terms. Commun. Comput. Phys., 2017, 21(1): 271-312,
CrossRef Google scholar
[8.]
Busto S, Dumbser M, Escalante C, Favrie N, Gavrilyuk S. On high order ADER discontinuous Galerkin schemes for first order hyperbolic reformulations of nonlinear dispersive systems. J. Sci. Comput., 2021, 87(2): 48,
CrossRef Google scholar
[9.]
Busto S, Toro EF, Vázquez-Cendón ME. Design and analysis of ADER-type schemes for model advection-diffusion-reaction equations. J. Comput. Phys., 2016, 327: 553-575,
CrossRef Google scholar
[10.]
Cockburn B. Discontinuous Galerkin methods. ZAMM, 2003, 83(11): 731-754,
CrossRef Google scholar
[11.]
Cockburn, B., Karniadakis, G.E., Shu, C.-W.: Discontinuous Galerkin Methods: Theory, Computation and Applications. Lecture Notes in Computational Science and Engineering, vol. 11. Springer, Berlin (2000). https://doi.org/10.1007/978-3-642-59721-3
[12.]
Cockburn B, Shu C-W. Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput., 2001, 16: 173-261,
CrossRef Google scholar
[13.]
Dumbser M, Balsara DS, Toro EF, Munz C-D. A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes. J. Comput. Phys., 2008, 227(18): 8209-8253,
CrossRef Google scholar
[14.]
Dumbser M, Fambri F, Tavelli M, Bader M, Weinzierl T. Efficient implementation of ADER discontinuous Galerkin schemes for a scalable hyperbolic PDE engine. Axioms, 2018, 7(3): 63,
CrossRef Google scholar
[15.]
Dumbser M, Munz C-D. Building blocks for arbitrary high order discontinuous Galerkin schemes. J. Sci. Comput., 2006, 27(1–3): 215-230,
CrossRef Google scholar
[16.]
Fambri F. Discontinuous Galerkin methods for compressible and incompressible flows on space-time adaptive meshes: toward a novel family of efficient numerical methods for fluid dynamics. Arch. Comput. Methods Eng., 2020, 27(1): 199-283,
CrossRef Google scholar
[17.]
Fambri F, Dumbser M. Semi-implicit discontinuous Galerkin methods for the incompressible Navier-Stokes equations on adaptive staggered Cartesian grids. Comput. Methods Appl. Mech. Eng., 2017, 324: 170-203,
CrossRef Google scholar
[18.]
Fambri F, Dumbser M, Zanotti O. Space-time adaptive ADER-DG schemes for dissipative flows: compressible Navier-Stokes and resistive MHD equations. Comput. Phys. Commun., 2017, 220: 297-318,
CrossRef Google scholar
[19.]
Gassner G, Dumbser M, Hindenlang F, Munz C-D. Explicit one-step time discretizations for discontinuous Galerkin and finite volume schemes based on local predictors. J. Comput. Phys., 2011, 230(11): 4232-4247,
CrossRef Google scholar
[20.]
Hartmann, R.: Numerical analysis of higher order discontinuous Galerkin finite element methods. In: VKI LS 2008-08: CFD-ADIGMA Course on very High Order Discretization Methods, Oct. 13–17 (2008). https://elib.dlr.de/57074/1/Har08b.pdf
[21.]
Hidalgo A, Dumbser M. ADER schemes for nonlinear systems of stiff advection-diffusion-reaction equations. J. Sci. Comput., 2011, 48(1/2/3): 173-189,
CrossRef Google scholar
[22.]
Liu H, Yan J. The direct discontinuous Galerkin (DDG) methods for diffusion problems. SIAM J. Numer. Anal., 2009, 47(1): 675-698,
CrossRef Google scholar
[23.]
Loubère R, Dumbser M, Diot S. A new family of high order unstructured MOOD and ADER finite volume schemes for multidimensional systems of hyperbolic conservation laws. Commun. Comput. Phys., 2014, 16(3): 718-763,
CrossRef Google scholar
[24.]
Ricchiuto M, Abgrall R. Explicit Runge-Kutta residual distribution schemes for time dependent problems: second order case. J. Comput. Phys., 2010, 229(16): 5653-5691,
CrossRef Google scholar
[25.]
Rivière, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. Frontiers in Applied Mathematics. SIAM, Philadelphia (2008) (OCLC: ocn226292048)
[26.]
Titarev VA, Toro EF. ADER: arbitrary high order Godunov approach. J. Sci. Comput., 2002, 17(1/4): 609-618,
CrossRef Google scholar
[27.]
Toro EF, Montecinos GI. Advection-diffusion-reaction equations: hyperbolization and high-order ADER discretizations. SIAM J. Sci. Comput., 2014, 36(5): 2423-2457,
CrossRef Google scholar
[28.]
Zahran YH. Central ADER schemes for hyperbolic conservation laws. J. Math. Anal. Appl., 2008, 346(1): 120-140,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/