A Multiscale Method for Two-Component, Two-Phase Flow with a Neural Network Surrogate

Jim Magiera, Christian Rohde

Communications on Applied Mathematics and Computation ›› 2024, Vol. 6 ›› Issue (4) : 2265-2294. DOI: 10.1007/s42967-023-00349-8
Original Paper

A Multiscale Method for Two-Component, Two-Phase Flow with a Neural Network Surrogate

Author information +
History +

Abstract

Understanding the dynamics of phase boundaries in fluids requires quantitative knowledge about the microscale processes at the interface. We consider the sharp-interface motion of the compressible two-component flow and propose a heterogeneous multiscale method (HMM) to describe the flow fields accurately. The multiscale approach combines a hyperbolic system of balance laws on the continuum scale with molecular-dynamics (MD) simulations on the microscale level. Notably, the multiscale approach is necessary to compute the interface dynamics because there is—at present—no closed continuum-scale model. The basic HMM relies on a moving-mesh finite-volume method and has been introduced recently for the compressible one-component flow with phase transitions by Magiera and Rohde in (J Comput Phys 469: 111551, 2022). To overcome the numerical complexity of the MD microscale model, a deep neural network is employed as an efficient surrogate model. The entire approach is finally applied to simulate droplet dynamics for argon-methane mixtures in several space dimensions. To our knowledge, such compressible two-phase dynamics accounting for microscale phase-change transfer rates have not yet been computed.

Keywords

Phase transition / Hyperbolic balance laws for multi-component fluids / Multiscale modeling / Moving-mesh methods / Deep neural networks

Cite this article

Download citation ▾
Jim Magiera, Christian Rohde. A Multiscale Method for Two-Component, Two-Phase Flow with a Neural Network Surrogate. Communications on Applied Mathematics and Computation, 2024, 6(4): 2265‒2294 https://doi.org/10.1007/s42967-023-00349-8

References

[1.]
Alkämper M, Magiera J. Interface preserving moving mesh (Code). DaRUS, 2021,
CrossRef Google scholar
[2.]
Allen MP, Tildesley DJ. . Computer Simulation of Liquids, 2017 2 Oxford Oxford University Press Inc,
CrossRef Google scholar
[3.]
Anderson DM, McFadden GB, Wheeler AA. Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech., 1998, 30(1): 139-165,
CrossRef Google scholar
[4.]
Andrianov N, Warnecke G. The Riemann problem for the Baer-Nunziatio model of two-phase flows. J. Comput. Phys., 2004, 195: 434-464,
CrossRef Google scholar
[5.]
Berthelot D. Sur le mélange des gaz. Comptes rendus hebdomadaires des séances de l’Académie des Sciences, 1898, 126: 1703-1706
[6.]
Bothe D, Dreyer W. Continuum thermodynamics of chemically reacting fluid mixtures. Acta Mech., 2023, 226(6): 1757-1805,
CrossRef Google scholar
[7.]
Chalons C, Rohde C, Wiebe M. A finite volume method for undercompressive shock waves in two space dimensions. Math. Model. Numer. Anal., 2017, 51: 1987-2015,
CrossRef Google scholar
[8.]
Colombo RM, Priuli FS. Characterization of Riemann solvers for the two phase p-system. Commun. Partial Differ. Equ., 2003, 28(7–8): 1371-1389,
CrossRef Google scholar
[9.]
Dreyer W, Giesselmann J, Kraus C. A compressible mixture model with phase transition. Physica D, 2014, 273/274: 1-13,
CrossRef Google scholar
[10.]
Engquist B, Li X, Ren W, Vanden-Eijnden E. Heterogeneous multiscale methods: a review. Commun. Comput. Phys., 2007, 2(3): 367-450
[11.]
Faccanoni G, Kokh S, Allaire G. Modelling and simulation of liquid-vapor phase transition in compressible flows based on thermodynamical equilibrium. ESAIM Math. Model. Numer. Anal., 2012, 46(5): 1029-1054,
CrossRef Google scholar
[12.]
Fechter S, Munz C-D, Rohde C, Zeiler C. A sharp interface method for compressible liquid-vapor flow with phase transition and surface tension. J. Comput. Phys., 2017, 336: 347-374,
CrossRef Google scholar
[13.]
Frezzotti A, Barbante P. Simulation of shock induced vapor condensation flows in the Lennard-Jones fluid by microscopic and continuum models. Phys. Fluids, 2020, 32(12): 122106,
CrossRef Google scholar
[14.]
Ghazi H, James F, Mathis H. A nonisothermal thermodynamical model of liquid-vapor interaction with metastability. Discrete Contin. Dyn. Syst. Ser. B, 2021, 26(5): 2371-2409
[15.]
Gross J, Sadowski G. Perturbed-Chain SAFT: an equation of state based on a perturbation theory for chain molecules. Ind. Eng. Chem. Res., 2001, 40(4): 1244-1260,
CrossRef Google scholar
[16.]
Hairer E, Lubich C, Wanner G. Geometric numerical integration illustrated by the Störmer-Verlet method. Acta Numer., 2003, 12: 399-450,
CrossRef Google scholar
[17.]
Han E, Hantke M, Warnecke G. Criteria for nonuniqueness of Riemann solutions to compressible duct flows. Z. fur Angew. Math. Phys. Mech., 2013, 93(6/7): 465-475,
CrossRef Google scholar
[18.]
Hantke M, Matern C, Warnecke G, Yaghi H. A new method to discretize a model for isothermal flow with a multi-component equation of state. J. Comput. Appl., 2023, 422: 114876,
CrossRef Google scholar
[19.]
Hantke M, Müller S. Analysis and simulation of a new multi-component two-phase flow model with phase transitions and chemical reactions. Q. Appl. Math., 2018, 76(2): 253-287,
CrossRef Google scholar
[20.]
Hantke M, Müller S, Richter P. Closure conditions for non-equilibrium multi-component models. Contin. Mech. Thermodyn., 2016, 28: 1157-1189,
CrossRef Google scholar
[21.]
Hantke M, Thein F. On the impossibility of first-order phase transitions in systems modeled by the full Euler equations. Entropy, 2019, 21(11): 1039,
CrossRef Google scholar
[22.]
Hitz T, Jöns S, Heinen M, Vrabec J, Munz C-D. Comparison of macro- and microscopic solutions of the Riemann problem II. Two-phase shock tube. J. Comput. Phys., 2020, 429,
CrossRef Google scholar
[23.]
Janzen, T.: On diffusion coefficients of multicomponent liquid mixtures predicted by equilibrium molecular dynamics simulation. Doctoral thesis, Technische Universität Berlin, Berlin (2019)
[24.]
Keim J, Munz C-D, Rohde C. A relaxation model for the non-isothermal Navier-Stokes-Korteweg equations in confined domains. J. Comput. Phys., 2023, 474: 111830,
CrossRef Google scholar
[25.]
Krishna R, Wesselingh JA. The Maxwell-Stefan approach to mass transfer. Chem. Eng. Sci., 1997, 52(6): 861-911,
CrossRef Google scholar
[26.]
Lorentz HA. Ueber die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase. Annalen der Physik, 1881, 248(1): 127-136,
CrossRef Google scholar
[27.]
Ma PC, Lv Y, Ihme M. An entropy-stable hybrid scheme for simulations of transcritical real-fluid flows. J. Comput. Phys., 2017, 340: 330-357,
CrossRef Google scholar
[28.]
Magiera, J.: A molecular-continuum multiscale solver for liquid-vapor flow: modeling and numerical simulation. PhD thesis, University of Stuttgart, Stuttgart (2021)
[29.]
Magiera J. Data sets for a molecular-continuum multiscale solver for liquid-vapor flow: modeling and numerical simulation. DaRUS, 2021,
CrossRef Google scholar
[30.]
Magiera J, Ray D, Hesthaven JS, Rohde C. Constraint-aware neural networks for Riemann problems. J. Comput. Phys., 2020, 409: 109345,
CrossRef Google scholar
[31.]
Magiera J, Rohde C. Klingenberg C, Westdickenberg M. A particle-based multiscale solver for compressible liquid-vapor flow. Theory, Numerics and Applications of Hyperbolic Problems II, 2018 Cham Springer 291-304,
CrossRef Google scholar
[32.]
Magiera J, Rohde C. A molecular-continuum multiscale model for inviscid liquid-vapor flow with sharp interfaces. J. Comput. Phys., 2022, 469: 111551,
CrossRef Google scholar
[33.]
Magiera J, Rohde C. Schulte K, Tropea C, Weigand B. Analysis and numerics of sharp and diffuse interface models for droplet dynamics. Droplet Dynamics Under Extreme Ambient Conditions. Fluid Mechanics and Its Applications, 2022 Cham Springer 67-86,
CrossRef Google scholar
[34.]
Mitchell DP. Spectrally optimal sampling for distribution ray tracing. Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques. SIGGRAPH 91, 1991 New York ACM 157-164,
CrossRef Google scholar
[35.]
Ponte M, Streett WB, Miller RC, Staveley LAK. An experimental study of the equation of state of liquid (argon + methane), and the effect of pressure on their excess thermodynamic functions. J. Chem. Thermodyn., 1981, 13(8): 767-781,
CrossRef Google scholar
[36.]
Rohde C, Zeiler C. On Riemann solvers and kinetic relations for isothermal two-phase flows with surface tension. Z. fur Angew. Math. Phys., 2018, 69(3): 76,
CrossRef Google scholar
[37.]
Saurel R, Abgrall R. A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys., 2023, 150(2): 425-467,
CrossRef Google scholar
[38.]
Saurel R, Petitpas F, Abgrall R. Modelling phase transition in metastable liquids: application to cavitating and flashing flows. J. Fluid Mech., 2008, 607: 313-350,
CrossRef Google scholar
[39.]
Shen Y, Ren Y, Ding H. A 3D conservative sharp interface method for simulation of compressible two-phase flows. J. Comput. Phys., 2020, 403: 109107-10919,
CrossRef Google scholar
[40.]
Truskinovsky L. Kinks versus shocks. Shock Induced Transitions and Phase Structures in General Media. IMA Volumes in Mathematics and Its Applications, 1993 New York Springer 185-229
[41.]
Vrabec J, Fischer J. Vapour liquid equilibria of mixtures from the NpT plus test particle method. Mol. Phys., 1995, 85(4): 781-792,
CrossRef Google scholar
[42.]
Vrabec J, Lotfi A, Fischer J. Vapour liquid equilibria of Lennard-Jones model mixtures from the NpT plus test particle method. Fluid Phase Equilib., 1995, 112(2): 173-197,
CrossRef Google scholar
[43.]
Zein A, Hantke M, Warnecke G. Modeling phase transition for compressible two-phase flows applied to metastable liquids. J. Comput. Phys., 2010, 229(8): 2964-2998,
CrossRef Google scholar
Funding
Universit?t Stuttgart (1023)

Accesses

Citations

Detail

Sections
Recommended

/