Revisting High-Resolution Schemes with van Albada Slope Limiter

Jingcheng Lu, Eitan Tadmor

Communications on Applied Mathematics and Computation ›› 2024, Vol. 6 ›› Issue (3) : 1924-1953. DOI: 10.1007/s42967-023-00348-9
Original Paper

Revisting High-Resolution Schemes with van Albada Slope Limiter

Author information +
History +

Abstract

Slope limiters play an essential role in maintaining the non-oscillatory behavior of high-resolution methods for nonlinear conservation laws. The family of minmod limiters serves as the prototype example. Here, we revisit the question of non-oscillatory behavior of high-resolution central schemes in terms of the slope limiter proposed by van Albada et al. (Astron Astrophys 108: 76–84, 1982). The van Albada (vA) limiter is smoother near extrema, and consequently, in many cases, it outperforms the results obtained using the standard minmod limiter. In particular, we prove that the vA limiter ensures the one-dimensional Total-Variation Diminishing (TVD) stability and demonstrate that it yields noticeable improvement in computation of one- and two-dimensional systems.

Keywords

High resolution / Limiters / Total-Variation Diminishing (TVD) stability / Central schemes

Cite this article

Download citation ▾
Jingcheng Lu, Eitan Tadmor. Revisting High-Resolution Schemes with van Albada Slope Limiter. Communications on Applied Mathematics and Computation, 2024, 6(3): 1924‒1953 https://doi.org/10.1007/s42967-023-00348-9

References

[1.]
van Albada GD, van Leer B, Roberts WW Jr. A comparative study of computational methods in cosmic gas dynamics. Astron. Astrophys., 1982, 108(1): 76-84
[2.]
Arminjon P, St-Cyr A, Madrane A. New two-and three-dimensional non-oscillatory central finite volume methods on staggered cartesian grids. Appl. Numer. Math., 2002, 40(3): 367-390
[3.]
Balbás, J., Tadmor, E.: Central station—a collection of references on high-resolution non-oscillatory central schemes (2006). https://www.math.umd.edu/~tadmor/centpack/publications/
[4.]
Balbás J, Tadmor E, Cheng-Chin W. Non-oscillatory central schemes for one-and two-dimensional MHD equations: I. J. Comput. Phys., 2004, 201(1): 261-285
[5.]
Chakravarthy, S., Osher, S.: A new class of high accuracy TVD schemes for hyperbolic conservation laws. In: 23rd Aerospace Sciences Meeting, p. 363 (1985)
[6.]
Einfeldt B. On Godunov-type methods for gas dynamics. SIAM J. Numer. Anal., 1988, 25(2): 294-318
[7.]
Engquist B, Osher S. One-sided difference approximations for nonlinear conservation laws. Math. Comput., 1981, 36(154): 321-351
[8.]
Fjordholm US, Mishra S, Tadmor E. Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws. SIAM J. Numer. Anal., 2012, 50(2): 544-573
[9.]
Fjordholm US, Mishra S, Tadmor E. ENO reconstruction and ENO interpolation are stable. Found. Comput. Math., 2013, 13: 139-159
[10.]
Fjordholm US, Ray D. A sign preserving WENO reconstruction method. J. Sci. Comput., 2016, 68: 42-63
[11.]
Godunov SK. A finite difference method for the numerical computation of discontinuous solutions of the equations of fluid dynamics. Mat. Sb, 1959, 47(271–290): 134
[12.]
Gottlieb S, Ketcheson DI, Shu C-W. . Strong Stability Preserving Runge–Kutta and Multistep Time Discretizations, 2011 Singapore World Scientific
[13.]
Gottlieb S, Shu C-W, Tadmor E. Strong stability-preserving high-order time discretization methods. SIAM Rev., 2001, 43(1): 89-112
[14.]
Harten A. High resolution schemes for hyperbolic conservation laws. J. Comput. Phys., 1997, 135(2): 260-278
[15.]
Harten A, Engquist B, Osher S, Chakravarthy SR. Uniformly high order accurate essentially non-oscillatory schemes, III. J. Comput. Phys., 1987, 71(2): 231-303
[16.]
Harten A, Hyman JM, Lax PD, Keyfitz B. On finite-difference approximations and entropy conditions for shocks. Commun. Pure Appl. Math., 1976, 29(3): 297-322
[17.]
Harten A, Lax PD, van Leer B. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev., 1983, 25(1): 35-61
[18.]
Harten A, Osher S. Uniformly high-order accurate nonoscillatory schemes. I. Upwind and High-Resolution Schemes, 1997 Berlin Springer 187-217
[19.]
Jiang G-S, Tadmor E. Nonoscillatory central schemes for multidimensional hyperbolic conservation laws. SIAM J. Sci. Comput., 1998, 19(6): 1892-1917
[20.]
Johnson C, Szepessy A, Hansbo P. On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws. Math. Comput., 1990, 54(189): 107-129
[21.]
Kupferman R, Tadmor E. A fast, high resolution, second-order central scheme for incompressible flows. Proc. Natl. Acad. Sci., 1997, 94(10): 4848-4852
[22.]
Kurganov A, Levy D. A third-order semidiscrete central scheme for conservation laws and convection-diffusion equations. SIAM J. Sci. Comput., 2000, 22(4): 1461-1488
[23.]
Kurganov A, Noelle S, Petrova G. Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton–Jacobi equations. SIAM J. Sci. Comput., 2001, 23(3): 707-740
[24.]
Kurganov A, Tadmor E. New high-resolution central schemes for nonlinear conservation laws and convection–diffusion equations. J. Comput. Phys., 2000, 160(1): 241-282
[25.]
Lax PD. Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun. Pure Appl. Math., 1954, 7: 159-193
[26.]
van Leer B. Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys., 1979, 32(1): 101-136
[27.]
van Leer B. On the relation between the upwind-differencing schemes of Godunov, Engquist–Osher and Roe. SIAM J. Sci. Stat. Comput., 1984, 5(1): 1-20
[28.]
Levy D, Puppo G, Russo G. Central WENO schemes for hyperbolic systems of conservation laws. ESAIM Math. Model. Numer. Anal., 1999, 33(3): 547-571
[29.]
Levy D, Puppo G, Russo G. A third order central WENO scheme for 2D conservation laws. Appl. Numer. Math., 2000, 33(1–4): 415-421
[30.]
Levy D, Puppo G, Russo G. A fourth-order central WENO scheme for multidimensional hyperbolic systems of conservation laws. SIAM J. Sci. Comput., 2002, 24(2): 480-506
[31.]
Levy D, Tadmor E. Non-oscillatory central schemes for the incompressible 2-d Euler equations. Math. Res. Lett., 1997, 4(3): 321-340
[32.]
Liu X-D, Osher S, Chan T. Weighted essentially non-oscillatory schemes. J. Comput. Phys., 1994, 115(1): 200-212
[33.]
Liu X-D, Tadmor E. Third order nonoscillatory central scheme for hyperbolic conservation laws. Numer. Math., 1998, 79(3): 397-425
[34.]
Liu Y, Shu C-W, Tadmor E, Zhang M. L2 stability analysis of the central discontinuous Galerkin method and a comparison between the central and regular discontinuous Galerkin methods. ESAIM Math. Model. Numer. Anal., 2008, 42(4): 593-607
[35.]
Mulder WA, van Leer B. Experiments with implicit upwind methods for the Euler equations. J. Comput. Phys., 1985, 59(2): 232-246
[36.]
Nessyahu H, Tadmor E. Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys., 1990, 87(2): 408-463
[37.]
Osher S. Riemann solvers, the entropy condition, and difference. SIAM J. Numer. Anal., 1984, 21(2): 217-235
[38.]
Osher S. Convergence of generalized MUSCL schemes. SIAM J. Numer. Anal., 1985, 22(5): 947-961
[39.]
Osher S, Tadmor E. On the convergence of difference approximations to scalar conservation laws. Math. Comput., 1988, 50(181): 19-51
[40.]
Piperno S, Depeyre S. Criteria for the design of limiters yielding efficient high resolution TVD schemes. Comput. Fluids, 1998, 27(2): 183-197
[41.]
Roe PL. Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys., 1981, 43(2): 357-372
[42.]
Saurel R, Abgrall R. A simple method for compressible multifluid flows. SIAM J. Sci. Comput., 1999, 21(3): 1115-1145
[43.]
Shu C-W. TVB uniformly high-order schemes for conservation laws. Math. Comput., 1987, 49(179): 105-121
[44.]
Shu C-W. Total-variation-diminishing time discretizations. SIAM J. Sci. Stat. Comput., 1988, 9(6): 1073-1084
[45.]
Shu C-W. Cockburn B, Shu C-W, Johnson C, Tadmor E. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, 1998 Berlin Springer 285-372
[46.]
Shu C-W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes. Acta Numer., 2020, 29: 701-762
[47.]
Shur ML, Spalart PR, Strelets MK. Noise prediction for increasingly complex jets. Part I: methods and tests. Int. J. Aeroacoust., 2005, 4(3): 213-245
[48.]
Spiteri RJ, Ruuth SJ. A new class of optimal high-order strong-stability-preserving time discretization methods. SIAM J. Numer. Anal., 2002, 40(2): 469-491
[49.]
Sweby PK. High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal., 1984, 21(5): 995-1011
[50.]
Tadmor E. Numerical viscosity and the entropy condition for conservative difference schemes. Math. Comput., 1984, 43(168): 369-381
[51.]
Tadmor E. Convenient total variation diminishing conditions for nonlinear difference schemes. SIAM J. Numer. Anal., 1988, 25(5): 1002-1014
[52.]
Tadmor E. Total variation and error estimates for spectral viscosity approximations. Math. Comput., 1993, 60(201): 245-256
[53.]
Tadmor E. Cockburn B, Shu C-W, Johnson C, Tadmor E. Approximate solutions of nonlinear conservation laws and related equations. Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, 1998 Berlin Springer 1-149
[54.]
Tadmor E. Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numer., 2003, 12: 451-512
[55.]
Tadmor E. Selected topics in approximate solutions of nonlinear conservation laws. High-resolution central schemes. Nonlinear Conservation Laws and Applications, 2011 New York Springer 101-122
[56.]
Toro EF, Spruce M, Speares W. Restoration of the contact surface in the HLL–Riemann solver. Shock Waves, 1994, 4(1): 25-34
[57.]
Wang S, Zhengfu X. Total variation bounded flux limiters for high order finite difference schemes solving one-dimensional scalar conservation laws. Math. Comput., 2019, 88(316): 691-716
[58.]
Woodward P, Colella P. The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys., 1984, 54(1): 115-173
[59.]
Zenginoglu, A.: Centpy: central schemes for conservation laws in python (2020). https://pypi.org/project/centpy/
[60.]
Zhang J, Jackson TL. A high-order incompressible flow solver with WENO. J. Comput. Phys., 2009, 228(7): 2426-2442
Funding
Office of Naval Research(N00014-2112773)

Accesses

Citations

Detail

Sections
Recommended

/