Accuracy Analysis for Explicit-Implicit Finite Volume Schemes on Cut Cell Meshes

Sandra May, Fabian Laakmann

Communications on Applied Mathematics and Computation ›› 2024, Vol. 6 ›› Issue (4) : 2239-2264. DOI: 10.1007/s42967-023-00345-y
Original Paper

Accuracy Analysis for Explicit-Implicit Finite Volume Schemes on Cut Cell Meshes

Author information +
History +

Abstract

The solution of time-dependent hyperbolic conservation laws on cut cell meshes causes the small cell problem: standard schemes are not stable on the arbitrarily small cut cells if an explicit time stepping scheme is used and the time step size is chosen based on the size of the background cells. In May and Berger (J Sci Comput 71: 919–943, 2017), the mixed explicit-implicit approach in general and MUSCL-Trap (monotonic upwind scheme for conservation laws and trapezoidal scheme) in particular have been introduced to solve this problem by using implicit time stepping on the cut cells. Theoretical and numerical results have indicated that this might lead to a loss in accuracy when switching between the explicit and implicit time stepping. In this contribution, we examine this in more detail and will prove in one dimension that the specific combination MUSCL-Trap of an explicit second-order and an implicit second-order scheme results in a fully second-order mixed scheme. As this result is unlikely to hold in two dimensions, we also introduce two new versions of mixed explicit-implicit schemes based on exchanging the explicit scheme. We present numerical tests in two dimensions where we compare the new versions with the original MUSCL-Trap scheme.

Keywords

Cartesian cut cell method / Finite volume scheme / Embedded boundary grid / Mixed explicit-implicit / Truncation error / Error accumulation

Cite this article

Download citation ▾
Sandra May, Fabian Laakmann. Accuracy Analysis for Explicit-Implicit Finite Volume Schemes on Cut Cell Meshes. Communications on Applied Mathematics and Computation, 2024, 6(4): 2239‒2264 https://doi.org/10.1007/s42967-023-00345-y

References

[1.]
Aftosmis MJ, Berger MJ, Melton JE. Robust and efficient Cartesian mesh generation for component-based geometry. AIAA J., 1998, 36(6): 952-960,
CrossRef Google scholar
[2.]
Almgren AS, Bell JB, Szymczak WG. A numerical method for the incompressible Navier-Stokes equations based on an approximate projection. SIAM J. Sci. Comput., 1996, 17(2): 358-369,
CrossRef Google scholar
[3.]
Barth TJ. Napolitano M, Sabetta F. A 3-D least-squares upwind Euler solver for unstructured meshes. Thirteenth International Conference on Numerical Methods in Fluid Dynamics. Lecture Notes in Physics, 2005 Berlin, Heidelberg, New York Springer 240-244
[4.]
Bell, J.B.B. et al.: BoxLib User’s Guide. Technical report, CCSE, Lawrence Berkeley National Laboratory (2012). https://ccse.lbl.gov/BoxLib/BoxLibUsersGuide.pdf
[5.]
Berger, M., Aftosmis, M.J., Murman, S.M.: Analysis of slope limiters on irregular grids. In: 43rd AIAA Aerospace Sciences Meeting, Reno, NV. AIAA 2005-0490 (2005)
[6.]
Berger M, Giuliani A. A state redistribution algorithm for finite volume schemes on cut cell meshes. J. Comput. Phys., 2021, 428: 1-34,
CrossRef Google scholar
[7.]
Berger MJ, Helzel C. A simplified h \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h$$\end{document}-box method for embedded boundary grids. SIAM J. Sci. Comput., 2012, 34: 861-888,
CrossRef Google scholar
[8.]
Berger MJ, Helzel C, LeVeque R. H-box method for the approximation of hyperbolic conservation laws on irregular grids. SIAM J. Numer. Anal., 2003, 41: 893-918,
CrossRef Google scholar
[9.]
Burman E. Ghost penalty. C. R. Math. Acad. Sci. Paris, 2010, 348(21): 1217-1220,
CrossRef Google scholar
[10.]
Chern, I.-L., Colella, P.: A Conservative Front Tracking Method for Hyperbolic Conservation Laws. Technical report. Lawrence Livermore National Laboratory, Livermore, CA (1987)
[11.]
Colella P. A direct Eulerian MUSCL scheme for gas dynamics. SIAM J. Sci. Stat. Comput., 1985, 6: 104-117,
CrossRef Google scholar
[12.]
Colella P, Graves DT, Keen BJ, Modiano D. A Cartesian grid embedded boundary method for hyperbolic conservation laws. J. Comput. Phys., 2006, 211(1): 347-366,
CrossRef Google scholar
[13.]
Collins JP, Colella P, Glaz HM. An implicit-explicit Eulerian Godunov scheme for compressible flow. J. Comput. Phys., 1995, 116(2): 195-211,
CrossRef Google scholar
[14.]
Engwer C, May S, Nüßing A, Streitbürger F. A stabilized DG cut cell method for discretizing the linear transport equation. SIAM J. Sci. Comput., 2020, 42(6): 3677-3703,
CrossRef Google scholar
[15.]
Frolkovič P, Krišková S, Rohová M, Žeravý M. Semi-implicit methods for advection equations with explicit forms of numerical solution. Jpn. J. Ind. Appl. Math., 2022, 39: 843-867,
CrossRef Google scholar
[16.]
Fu P, Frachon T, Kreiss G, Zahedi S. High order discontinuous cut finite element methods for linear hyperbolic conservation laws with an interface. J. Sci. Comput., 2022, 90: 84,
CrossRef Google scholar
[17.]
Fu P, Kreiss G. High order cut discontinuous Galerkin methods for hyperbolic conservation laws in one space dimension. SIAM J. Sci. Comput., 2021, 43(4): 2404-2424,
CrossRef Google scholar
[18.]
Giuliani A. A two-dimensional stabilized discontinuous Galerkin method on curvilinear embedded boundary grids. J. Sci. Comput., 2022, 44: 389-415
[19.]
Gokhale N, Nikiforakis N, Klein R. A dimensionally split Cartesian cut cell method for hyperbolic conservation laws. J. Comput. Phys., 2018, 364: 186-208,
CrossRef Google scholar
[20.]
Gottlieb S, Shu C-W. Total variation diminishing Runge-Kutta schemes. Math. Comput., 1998, 67: 73-85,
CrossRef Google scholar
[21.]
Helzel C, Berger MJ, LeVeque R. A high-resolution rotated grid method for conservation laws with embedded geometries. SIAM J. Sci. Comput., 2005, 26: 785-809,
CrossRef Google scholar
[22.]
Helzel C, Kerkmann D. Klöfkorn R, Keilegavlen E, Radu AF, Fuhrmann J. An active flux method for cut cell grids. Finite Volumes for Complex Applications IX—Methods, Theoretical Aspects, Examples, 2020 Cham, Switzerland Springer 507-515,
CrossRef Google scholar
[23.]
[24.]
[25.]
Klein R, Bates KR, Nikiforakis N. Well-balanced compressible cut-cell simulation of atmospheric flow. Philos. Trans. Roy. Soc. A, 2009, 367: 4559-4575,
CrossRef Google scholar
[26.]
Krivodonova L, Qin R. A discontinuous Galerkin method for solutions of the Euler equations on Cartesian grids with embedded geometries. J. Comput. Sci., 2013, 4(1/2): 24-35
[27.]
Laakmann, F.: Finite-Volumen-Methode zur Lösung von Hyperbolischen Erhaltungsgleichungen auf Eingebetteten Geometrien. Master’s thesis, TU Dortmund (2018)
[28.]
Leer B. Towards the ultimate conservative difference scheme, V. A second order sequel to Godunov’s methods. J. Comput. Phys., 1979, 32: 101-136,
CrossRef Google scholar
[29.]
LeVeque RJ. . Finite Volume Methods for Hyperbolic Problems, 2002 Cambridge, UK Cambridge University Press,
CrossRef Google scholar
[30.]
May, S.: Embedded Boundary Methods for Flow in Complex Geometries. PhD thesis, Courant Institute of Mathematical Sciences, New York University (2013)
[31.]
May S. Klöfkorn R, Keilegavlen E, Radu AF, Fuhrmann J. Time-dependent conservation laws on cut cell meshes and the small cell problem. Finite Volumes for Complex Applications IX—Methods, Theoretical Aspects, Examples, 2020 Cham, Switzerland Springer 39-53,
CrossRef Google scholar
[32.]
May S, Berger MJ. Two-dimensional slope limiters for finite volume schemes on non-coordinate-aligned meshes. SIAM J. Sci. Comput., 2013, 35: 2163-2187,
CrossRef Google scholar
[33.]
May S, Berger MJ. Fuhrmann J, Ohlberger M, Rohde C. A mixed explicit implicit time stepping scheme for Cartesian embedded boundary meshes. Finite Volumes for Complex Applications VII—Methods and Theoretical Aspects, 2014 Cham, Heidelberg, New York, Dordrecht, London Springer 393-400
[34.]
May S, Berger MJ. An explicit implicit scheme for cut cells in embedded boundary meshes. J. Sci. Comput., 2017, 71: 919-943,
CrossRef Google scholar
[35.]
May S, Streitbürger F. DoD stabilization for non-linear hyperbolic conservation laws on cut cell meshes in one dimension. Appl. Math. Comput., 2022, 419: 126854
[36.]
May S, Thein F. Explicit implicit domain splitting for two phase flows with phase transition. Phys. Fluids, 2023, 35: 016108,
CrossRef Google scholar
[37.]
Mikula K, Ohlberger M, Urbán J. Inflow-implicit/outflow-explicit finite volume methods for solving advection equations. Appl. Numer. Math., 2014, 85: 16-37,
CrossRef Google scholar
[38.]
Müller B, Krämer-Eis S, Kummer F, Oberlack M. A high-order discontinuous Galerkin method for compressible flows with immersed boundaries. Int. J. Numer. Methods Eng., 2016, 110(1): 3-30,
CrossRef Google scholar
[39.]
Muscat L, Puigt G, Montagnac M, Brenner P. A coupled implicit-explicit time integration method for compressible unsteady flows. J. Comput. Phys., 2019, 398: 108883,
CrossRef Google scholar
[40.]
Quirk JJ. An alternative to unstructured grids for computing gas dynamic flows around arbitrarily complex two-dimensional bodies. Comput. Fluids, 1994, 23(1): 125-142,
CrossRef Google scholar
[41.]
Wendroff B, White AB. A supraconvergent scheme for nonlinear hyperbolic systems. Comput. Math. Appl., 1989, 18(8): 761-767,
CrossRef Google scholar
Funding
Uppsala University

Accesses

Citations

Detail

Sections
Recommended

/