A Second-Order Image Denoising Model for Contrast Preservation

Wei Zhu

Communications on Applied Mathematics and Computation ›› 2024, Vol. 6 ›› Issue (2) : 1406-1427. DOI: 10.1007/s42967-023-00344-z
Original Paper

A Second-Order Image Denoising Model for Contrast Preservation

Author information +
History +

Abstract

In this work, we propose a second-order model for image denoising by employing a novel potential function recently developed in Zhu (J Sci Comput 88: 46, 2021) for the design of a regularization term. Due to this new second-order derivative based regularizer, the model is able to alleviate the staircase effect and preserve image contrast. The augmented Lagrangian method (ALM) is utilized to minimize the associated functional and convergence analysis is established for the proposed algorithm. Numerical experiments are presented to demonstrate the features of the proposed model.

Keywords

Image denoising / Variational model / Image contrast / Augmented Lagrangian method (ALM)

Cite this article

Download citation ▾
Wei Zhu. A Second-Order Image Denoising Model for Contrast Preservation. Communications on Applied Mathematics and Computation, 2024, 6(2): 1406‒1427 https://doi.org/10.1007/s42967-023-00344-z

References

[1.]
Aubert G, Vese L. A variational method in image recovery. SIAM J. Numer. Anal., 1997, 34: 1948-1979,
CrossRef Google scholar
[2.]
Bae E, Tai XC, Zhu W. Augmented Lagrangian method for an Euler’s elastica based segmentation model that promotes convex contours. Inverse Probl. Imag., 2017, 11: 1-23,
CrossRef Google scholar
[3.]
Bellettini G, Caselles V, Novaga M. The total variation flow in R n \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R} }^{n}$$\end{document}. J. Differential Equations, 2002, 184: 475-525,
CrossRef Google scholar
[4.]
Benning M, Burger M. Modern regularization methods for inverse problems. Acta Numerica, 2018, 27: 1-111,
CrossRef Google scholar
[5.]
Bertalmio M, Vese L, Sapiro G, Osher S. Simultaneous structure and texture image inpainting. IEEE Trans. Image Process., 2003, 12: 882-889,
CrossRef Google scholar
[6.]
Bredies K, Kunisch K, Pock T. Total generalized variation. SIAM J. Imaging Sci., 2010, 3: 492-526,
CrossRef Google scholar
[7.]
Brito-Loeza C, Chen K. Multigrid algorithm for high order denoising. SIAM J. Imaging Sci., 2010, 3: 363-389,
CrossRef Google scholar
[8.]
Chambolle A, Lions PL. Image recovery via total variation minimization and related problems. Numer. Math., 1997, 76: 167-188,
CrossRef Google scholar
[9.]
Chambolle A, Pock T. A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis., 2011, 40: 120-145,
CrossRef Google scholar
[10.]
Chan T, Esedoglu S. Aspects of total variation regularized L 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{1}$$\end{document} function approximation. SIAM J. Appl. Math., 2005, 65: 1817-1837,
CrossRef Google scholar
[11.]
Chan T, Esedoglu S, Park F, Yip MH. Paragios N, Chen Y, Faugeras O. Recent developments in total variation image restoration. Handbook of Mathematical Models in Computer Vision, 2005 Springer Verlag
[12.]
Chan T, Marquina A, Mulet P. High-order total variation-based image restoration. SIAM J. Sci. Comput., 2000, 22: 503-516,
CrossRef Google scholar
[13.]
Chan T, Shen J. Mathematical models for local nontexture inpaintings. SIAM J. Appl. Math., 2001, 62: 1019-1043
[14.]
Chan T, Wong CK. Total variation blind deconvolution. IEEE Trans. Image Process., 1998, 7: 370-375,
CrossRef Google scholar
[15.]
Chang QS, Che ZY. An adaptive algorithm for TV-based model of three norms L q ( q = 1 2 , 1 , 2 ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{q} (q=\frac{1}{2},1,2)$$\end{document} in image restoration. Appl. Math. Comput., 2018, 329: 251-265
[16.]
Glowinski R, Le Tallec P. . Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics, 1989 Philadelphia SIAM,
CrossRef Google scholar
[17.]
Goldstein T, Osher S. The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci., 2009, 2: 323-343,
CrossRef Google scholar
[18.]
Lysaker M, Lundervold A, Tai XC. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE. Trans. Image Process., 2003, 12: 1579-1590,
CrossRef Google scholar
[19.]
Lysaker M, Osher S, Tai XC. Noise removal using smoothed normals and surface fitting. IEEE. Trans. Image Process., 2004, 13: 1345-1457,
CrossRef Google scholar
[20.]
Meyer, Y.: Oscillating Patterns in Image Processing and Nonlinear Evolution Equations. University Lecture Series, Vol. 22, Amer. Math. Soc. Providence, RI (2001)
[21.]
Mumford D, Shah J. Optimal approximation by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math., 1989, 42: 577-685,
CrossRef Google scholar
[22.]
Osher S, Burger M, Goldfarb D, Xu JJ, Yin WT. An iterative regularization method for total variation-based image restoration. Multiscale Model. Simul., 2005, 4: 460-489,
CrossRef Google scholar
[23.]
Osher S, Sole A, Vese L. Image decomposition and restoration using total variation minimization and the H - 1 n o r m \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{-1}norm$$\end{document}. Multiscale Model. Simul., 2003, 1: 349-370,
CrossRef Google scholar
[24.]
Papafitsoros K, Schönlieb CB. A combined first and second order variational approach for image reconstruction. J. Math. Imaging Vis., 2014, 48: 308-338,
CrossRef Google scholar
[25.]
Rockafellar RT. Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res., 1976, 1: 97-116,
CrossRef Google scholar
[26.]
Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithm. Phys. D, 1992, 60: 259-268,
CrossRef Google scholar
[27.]
Setzer, S., Steidl, G.: Variational methods with higher order derivatives in image processing. In: Approximation XII, pp. 360–386 (2008)
[28.]
Strong D, Chan T. Edge-preserving and scale-dependent properties of total variation regularization. Inverse Problems, 2003, 19: 165-187,
CrossRef Google scholar
[29.]
Tai XC, Hahn J, Chung GJ. A fast algorithm for Euler’s elastica model using augmented Lagrangian method. SIAM J. Imaging Sci., 2011, 4: 313-344,
CrossRef Google scholar
[30.]
Vese L. A study in the BV space of a denoising-deblurring variational problem. Appl. Math. Optim., 2001, 44: 131-161,
CrossRef Google scholar
[31.]
Wu C, Tai XC. Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models. SIAM J. Imaging Sci., 2010, 3: 300-339,
CrossRef Google scholar
[32.]
Yashtini M, Kang SH, Zhu W. Efficient alternating minimization methods for variational edge-weighted colorization models. Adv. Comput. Math., 2019, 45: 1735-1767,
CrossRef Google scholar
[33.]
Zhu W. A numerical study of a mean curvature denoising model using a novel augmented Lagrangian method. Inverse Probl. Imag., 2017, 11: 975-996,
CrossRef Google scholar
[34.]
Zhu W. A first-order image denoising model for staircase reduction. Adv. Comput. Math., 2019, 45: 3217-3239,
CrossRef Google scholar
[35.]
Zhu W. Image denoising using L p-norm of mean curvature of image surface. J. Sci. Comput., 2020, 83: 32,
CrossRef Google scholar
[36.]
Zhu W. A first-order image restoration model that promotes image contrast preservation. J. Sci. Comput., 2021, 88: 46,
CrossRef Google scholar
[37.]
Zhu W, Chan T. Image denoising using mean curvature of image surface. SIAM J. Imaging Sci., 2012, 5: 1-32,
CrossRef Google scholar
[38.]
Zhu W, Tai XC, Chan T. Augmented Lagrangian method for a mean curvature based image denoising model. Inverse Probl. Imag., 2013, 7: 1409-1432,
CrossRef Google scholar
[39.]
Zhu W, Tai XC, Chan T. Image segmentation using Euler’s elastica as the regularization. J. Sci. Comput., 2013, 57: 414-438,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/