An Efficient Smoothing and Thresholding Image Segmentation Framework with Weighted Anisotropic-Isotropic Total Variation
Kevin Bui, Yifei Lou, Fredrick Park, Jack Xin
An Efficient Smoothing and Thresholding Image Segmentation Framework with Weighted Anisotropic-Isotropic Total Variation
In this paper, we design an efficient, multi-stage image segmentation framework that incorporates a weighted difference of anisotropic and isotropic total variation (AITV). The segmentation framework generally consists of two stages: smoothing and thresholding, thus referred to as smoothing-and-thresholding (SaT). In the first stage, a smoothed image is obtained by an AITV-regularized Mumford-Shah (MS) model, which can be solved efficiently by the alternating direction method of multipliers (ADMMs) with a closed-form solution of a proximal operator of the
Image segmentation / Non-convex optimization / Mumford-Shah (MS) model / Alternating direction method of multipliers (ADMMs) / Proximal operator
[1.] |
Alpert, S., Galun, M., Basri, R., Brandt, A.: Image segmentation by probabilistic bottom-up aggregation and cue integration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 315–327 (2007)
|
[2.] |
|
[3.] |
Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. In: 2007 ACM-SIAM Symposium on Discrete Algorithms (SODA’07), pp. 1027–1035 (2007)
|
[4.] |
Bar, L., Chan, T.F., Chung, G., Jung, M., Kiryati, N., Mohieddine, R., Sochen, N., Vese, L.A.: Mumford and Shah model and its applications to image segmentation and image restoration. In: Scherzer, O. (ed.) Handbook of Mathematical Methods in Imaging, pp. 1095–1157. Springer, New York, NY (2011). https://doi.org/10.1007/978-0-387-92920-0_25
|
[5.] |
|
[6.] |
|
[7.] |
|
[8.] |
|
[9.] |
|
[10.] |
Burdescu, D.D., Brezovan, M., Ganea, E., Stanescu, L.: A new method for segmentation of images represented in a HSV color space. In: Advanced Concepts for Intelligent Vision Systems: 11th International Conference, ACIVS 2009, Bordeaux, France, September 28–October 2, 2009. Proceedings 11, pp. 606–617. Springer (2009)
|
[11.] |
|
[12.] |
|
[13.] |
|
[14.] |
|
[15.] |
|
[16.] |
|
[17.] |
|
[18.] |
|
[19.] |
|
[20.] |
|
[21.] |
|
[22.] |
|
[23.] |
|
[24.] |
Chartrand, R., Yin, W.: Iteratively reweighted algorithms for compressive sensing. In: 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 3869–3872. IEEE (2008)
|
[25.] |
Chen, T.-W., Chen, Y.-L., Chien, S.-Y.: Fast image segmentation based on K-means clustering with histograms in HSV color space. In: 2008 IEEE 10th Workshop on Multimedia Signal Processing, pp. 322–325. IEEE (2008)
|
[26.] |
|
[27.] |
|
[28.] |
|
[29.] |
|
[30.] |
|
[31.] |
|
[32.] |
|
[33.] |
|
[34.] |
|
[35.] |
|
[36.] |
|
[37.] |
|
[38.] |
|
[39.] |
|
[40.] |
|
[41.] |
|
[42.] |
|
[43.] |
Hou, Z.: A review on MR image intensity inhomogeneity correction. Int. J. Biomed. Imaging 2006, 049515 (2006)
|
[44.] |
Huang, Z.-K., Liu, D.-H.: Segmentation of color image using EM algorithm in HSV color space. In: 2007 International Conference on Information Acquisition, pp. 316–319. IEEE (2007)
|
[45.] |
|
[46.] |
|
[47.] |
|
[48.] |
|
[49.] |
|
[50.] |
|
[51.] |
|
[52.] |
|
[53.] |
|
[54.] |
|
[55.] |
|
[56.] |
Lou, Y., Osher, S., Xin, J.: Computational aspects of constrained L 1 - L 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1-L_2$$\end{document} minimization for compressive sensing. In: Le, T., Hoai, A., Pham, D., Tao, N., Ngoc, T. (eds.) Modelling, Computation and Optimization in Information Systems and Management Sciences, pp. 169–180. Springer (2015)
|
[57.] |
|
[58.] |
|
[59.] |
|
[60.] |
Luong, Q.-T.: Color in computer vision. In: Chen, C.H., Pau, L.F., Wang, P.S.P. (eds.) Handbook of Pattern Recognition and Computer Vision, pp. 311–368. World Scientific, Singapore (1993)
|
[61.] |
Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Eighth IEEE International Conference on Computer Vision, 2001. ICCV 2001. Proceedings, vol. 2, pp. 416–423. IEEE (2001)
|
[62.] |
|
[63.] |
|
[64.] |
|
[65.] |
|
[66.] |
|
[67.] |
|
[68.] |
|
[69.] |
Pock, T., Chambolle, A., Cremers, D., Bischof, H.: A convex relaxation approach for computing minimal partitions. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009, pp. 810–817. IEEE (2009)
|
[70.] |
Pock, T., Cremers, D., Bischof, H., Chambolle, A.: An algorithm for minimizing the Mumford-Shah functional. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 1133–1140. IEEE (2009)
|
[71.] |
Potts, R.B.: Some generalized order-disorder transformations. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 48, pp. 106–109. Cambridge University Press, Cambridge (1952)
|
[72.] |
|
[73.] |
|
[74.] |
|
[75.] |
Sural, S., Qian, G., Pramanik, S.: Segmentation and histogram generation using the HSV color space for image retrieval. In: Proceedings. International Conference on Image Processing, vol. 2, pp. II–II. IEEE (2002)
|
[76.] |
Toure, S., Diop, O., Kpalma, K., Maiga, A.S.: Best-performing color space for land-sea segmentation. In: 2018 41st International Conference on Telecommunications and Signal Processing (TSP), pp. 1–5. IEEE (2018)
|
[77.] |
|
[78.] |
|
[79.] |
|
[80.] |
|
[81.] |
|
[82.] |
|
[83.] |
|
[84.] |
|
[85.] |
|
[86.] |
|
[87.] |
|
[88.] |
|
[89.] |
|
[90.] |
|
[91.] |
|
[92.] |
|
/
〈 | 〉 |