Convergence of a Generalized Riemann Problem Scheme for the Burgers Equation

Mária Lukáčová-Medvid’ová, Yuhuan Yuan

Communications on Applied Mathematics and Computation ›› 2024, Vol. 6 ›› Issue (4) : 2215-2238. DOI: 10.1007/s42967-023-00338-x
Original Paper

Convergence of a Generalized Riemann Problem Scheme for the Burgers Equation

Author information +
History +

Abstract

In this paper, we study the convergence of a second-order finite volume approximation of the scalar conservation law. This scheme is based on the generalized Riemann problem (GRP) solver. We first investigate the stability of the GRP scheme and find that it might be entropy-unstable when the shock wave is generated. By adding an artificial viscosity, we propose a new stabilized GRP scheme. Under the assumption that numerical solutions are uniformly bounded, we prove the consistency and convergence of this new GRP method.

Keywords

Scalar conservation law / Finite volume method / Generalized Riemann problem (GRP) solver / Entropy stability / Consistency / Convergence

Cite this article

Download citation ▾
Mária Lukáčová-Medvid’ová, Yuhuan Yuan. Convergence of a Generalized Riemann Problem Scheme for the Burgers Equation. Communications on Applied Mathematics and Computation, 2024, 6(4): 2215‒2238 https://doi.org/10.1007/s42967-023-00338-x

References

[1.]
Ball, J.M.: A version of the fundamental theorem for young measures. In: PDEs and Continuum Models of Phase Transitions, pp. 207–215. Springer, Berlin (1989)
[2.]
Ben-Artzi M, Falcovitz J, Li J. The convergence of the GRP scheme. Discrete Contin. Dyn. Syst., 2009, 23: 1-27
[3.]
Ben-Artzi M, Li J. Hyperbolic balance laws: Riemann invariants and the generalized Riemann problem. Numer. Math., 2007, 106(3): 369-425,
CrossRef Google scholar
[4.]
Ben-Artzi M, Li J. Consistency of finite volume approximations to nonlinear hyperbolic balance laws. Math. Comput., 2021, 90(327): 141-169,
CrossRef Google scholar
[5.]
Ben-Artzi M, Li J, Warnecke G. A direct Eulerian GRP scheme for compressible fluid flows. J. Comput. Phys., 2006, 218(1): 19-43,
CrossRef Google scholar
[6.]
Bressan A, Crasta G, Piccoli B. . Well-Posedness of the Cauchy Problem for n × n \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\times n$$\end{document} Systems of Conservation Laws, 2000 London Memoirs of the American Mathematical Society
[7.]
Bressan A, Lewicka M. A uniqueness condition for hyperbolic systems of conservation laws. Discrete Contin. Dyn. Syst., 2000, 6(3): 673-682,
CrossRef Google scholar
[8.]
Cancès C, Mathis H, Seguin N. Error estimate for time-explicit finite volume approximation of strong solutions to systems of conservation laws. SIAM J. Numer. Anal., 2016, 54(2): 1263-1287,
CrossRef Google scholar
[9.]
Chiodaroli E, De Lellis C, Kreml O. Global ill-posedness of the isentropic system of gas dynamics. Commun. Pure Appl. Math., 2015, 68(7): 1157-1190,
CrossRef Google scholar
[10.]
Chiodaroli E, Kreml O, Mácha V, Schwarzacher S. Non-uniqueness of admissible weak solutions to the compressible Euler equations with smooth initial data. Trans. Am. Math. Soc., 2021, 374(4): 2269-2295,
CrossRef Google scholar
[11.]
De Lellis C, Székelyhidi L Jr. On admissibility criteria for weak solutions of the Euler equations. Arch. Ration. Mech. Anal., 2010, 195(1): 225-260,
CrossRef Google scholar
[12.]
DiPerna RJ. Measure-valued solutions to conservation laws. Arch. Ration. Mech. Anal., 1985, 88(3): 223-270,
CrossRef Google scholar
[13.]
Feireisl E, Klingenberg C, Kreml O, Markfelder S. On oscillatory solutions to the complete Euler system. J. Differential Equations, 2020, 269(2): 1521-1543,
CrossRef Google scholar
[14.]
Feireisl E, Lukáčová-Medvid’ová M, Mizerová H. Convergence of finite volume schemes for the Euler equations via dissipative measure-valued solutions. Found. Comput. Math., 2020, 20(4): 923-966,
CrossRef Google scholar
[15.]
Feireisl E, Lukáčová-Medvid’ová M, Mizerová H. A finite volume scheme for the Euler system inspired by the two velocities approach. Numer. Math., 2020, 144(1): 89-132,
CrossRef Google scholar
[16.]
Feireisl E , Lukáčová-Medvid’ová M, Mizerová H, She B. . Numerical Analysis of Compressible Flows. MS & A Series, 2021 Lodnon Springer,
CrossRef Google scholar
[17.]
Fjordholm UK, Käppeli R, Mishra S, Tadmor E. Construction of approximate entropy measure-valued solutions for hyperbolic systems of conservation laws. Found. Comput. Math., 2017, 17(3): 763-827,
CrossRef Google scholar
[18.]
Fjordholm US, Mishra S, Tadmor E. ENO reconstruction and ENO interpolation are stable. Found. Comput. Math., 2013, 13: 139-159,
CrossRef Google scholar
[19.]
Fjordholm US, Mishra S, Tadmor E. On the computation of measure-valued solutions. Acta Numer., 2016, 25: 567-679,
CrossRef Google scholar
[20.]
Jovanović V, Rohde Ch. Error estimates for finite volume approximations of classical solutions for nonlinear systems of hyperbolic balance laws. SIAM J. Numer. Anal., 2006, 43(6): 2423-2449,
CrossRef Google scholar
[21.]
Kröner D, Noelle S, Rokyta M. Convergence of higher order upwind finite volume schemes on unstructured grids for scalar conservation laws in several space dimensions. Numer. Math., 1995, 71: 527-560,
CrossRef Google scholar
[22.]
Kröner D, Rokyta M. Convergence of upwind finite volume schemes for scalar conservation laws in two dimensions. SIAM J. Numer. Anal., 1994, 31(2): 324-343,
CrossRef Google scholar
[23.]
Kružkov S. First order quasilinear equations in several independent variables. USSR Math. Sbornik, 1970, 10(2): 217-243,
CrossRef Google scholar
[24.]
Li J, Du ZF. A two-stage fourth order time-accurate discretization for Lax-Wendroff type flow solvers I. Hyperbolic conservation laws. SIAM J. Sci. Comput., 2016, 38(5): A3046-A3069,
CrossRef Google scholar
[25.]
Lukáčová-Medvid’ová M, Yuan Y. Convergence of first-order finite volume method based on exact Riemann solver for the complete compressible Euler equations. Numer. Methods Partial Differential Equations, 2023, 39(5): 3777-3810,
CrossRef Google scholar
[26.]
Lukáčová-Medvid’ová M, She B, Yuan Y. Error estimates of the Godunov method for the multidimensional compressible Euler system. J. Sci. Comput., 2022, 91(3): Paper No. 71,
CrossRef Google scholar
Funding
Gutenberg Forschungskolleg; Chinesisch-Deutsche Zentrum für Wissenschaftsfórderung(GZ1465); Chinesisch-Deutsche Zentrum für Wissenschaftsf?rderung(GZ1465); Johannes Gutenberg-Universit?t Mainz

Accesses

Citations

Detail

Sections
Recommended

/