Convergence of a Generalized Riemann Problem Scheme for the Burgers Equation

Mária Lukáčová-Medvid’ová , Yuhuan Yuan

Communications on Applied Mathematics and Computation ›› 2024, Vol. 6 ›› Issue (4) : 2215 -2238.

PDF
Communications on Applied Mathematics and Computation ›› 2024, Vol. 6 ›› Issue (4) : 2215 -2238. DOI: 10.1007/s42967-023-00338-x
Original Paper

Convergence of a Generalized Riemann Problem Scheme for the Burgers Equation

Author information +
History +
PDF

Abstract

In this paper, we study the convergence of a second-order finite volume approximation of the scalar conservation law. This scheme is based on the generalized Riemann problem (GRP) solver. We first investigate the stability of the GRP scheme and find that it might be entropy-unstable when the shock wave is generated. By adding an artificial viscosity, we propose a new stabilized GRP scheme. Under the assumption that numerical solutions are uniformly bounded, we prove the consistency and convergence of this new GRP method.

Cite this article

Download citation ▾
Mária Lukáčová-Medvid’ová, Yuhuan Yuan. Convergence of a Generalized Riemann Problem Scheme for the Burgers Equation. Communications on Applied Mathematics and Computation, 2024, 6(4): 2215-2238 DOI:10.1007/s42967-023-00338-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

Funding

Gutenberg Forschungskolleg

Chinesisch-Deutsche Zentrum für Wissenschaftsfórderung(GZ1465)

Chinesisch-Deutsche Zentrum für Wissenschaftsförderung(GZ1465)

Johannes Gutenberg-Universität Mainz

AI Summary AI Mindmap
PDF

222

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/