On the Use of Monotonicity-Preserving Interpolatory Techniques in Multilevel Schemes for Balance Laws

Antonio Baeza, Rosa Donat, Anna Martínez-Gavara

Communications on Applied Mathematics and Computation ›› 2024, Vol. 6 ›› Issue (2) : 1319-1341. DOI: 10.1007/s42967-023-00332-3
Original Paper

On the Use of Monotonicity-Preserving Interpolatory Techniques in Multilevel Schemes for Balance Laws

Author information +
History +

Abstract

Cost-effective multilevel techniques for homogeneous hyperbolic conservation laws are very successful in reducing the computational cost associated to high resolution shock capturing numerical schemes. Because they do not involve any special data structure, and do not induce savings in memory requirements, they are easily implemented on existing codes and are recommended for 1D and 2D simulations when intensive testing is required. The multilevel technique can also be applied to balance laws, but in this case, numerical errors may be induced by the technique. We present a series of numerical tests that point out that the use of monotonicity-preserving interpolatory techniques eliminates the numerical errors observed when using the usual 4-point centered Lagrange interpolation, and leads to a more robust multilevel code for balance laws, while maintaining the efficiency rates observed for hyperbolic conservation laws.

Keywords

Hyperbolic balance laws / Well-balanced schemes / Multilevel schemes / Harten’s multiresolution

Cite this article

Download citation ▾
Antonio Baeza, Rosa Donat, Anna Martínez-Gavara. On the Use of Monotonicity-Preserving Interpolatory Techniques in Multilevel Schemes for Balance Laws. Communications on Applied Mathematics and Computation, 2024, 6(2): 1319‒1341 https://doi.org/10.1007/s42967-023-00332-3

References

[1.]
Abgrall R, Congedo PM, Geraci G. Towards a unified multiresolution scheme for treating discontinuities in differential equations with uncertainties. Math. Comput. Simul., 2017, 139: 1-22,
CrossRef Google scholar
[2.]
Aràndiga F, Chiavassa G, Donat R. Barth TJ, Chan T, Haimes R. Applications of Harten’s framework for multiresolution: from conservation laws to image compression. Multiscale and Multiresolution Methods, 2002 Berlin Springer 281-296,
CrossRef Google scholar
[3.]
Aràndiga F, Donat R, Santágueda M. The PCHIP subdivision scheme. Appl. Math. Comput., 2016, 272: 28-40
[4.]
Baeza A, Mulet P. Adaptive mesh refinement techniques for high-order shock capturing schemes for multi-dimensional hydrodynamic simulations. Int. J. Numer. Methods Fluids, 2006, 52(4): 455-471,
CrossRef Google scholar
[5.]
Berger MJ, Colella P. Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys., 1989, 82(1): 64-84,
CrossRef Google scholar
[6.]
Bermúdez A, Vázquez ME. Upwind methods for hyperbolic conservation laws with source terms. Comput. Fluids, 1994, 23: 1049-1071,
CrossRef Google scholar
[7.]
Bihari BL, Harten A. Multiresolution schemes for the numerical solution of 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2$$\end{document}-D conservation laws I. SIAM J. Sci. Comput., 1997, 18(2): 315-354,
CrossRef Google scholar
[8.]
Boiron O, Chiavassa G, Donat R. A high-resolution penalization method for large Mach number flows in the presence of obstacles. Comput. Fluids, 2009, 38(3): 703-714,
CrossRef Google scholar
[9.]
Bouchut F. . Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws and Well-Balanced Schemes. Frontiers in Mathematics, 2004 Basel Birkhauser,
CrossRef Google scholar
[10.]
Bürger R, Ruiz-Baier R, Schneider K. Adaptive multiresolution methods for the simulation of waves in excitable media. J. Sci. Comput., 2010, 43: 261-290,
CrossRef Google scholar
[11.]
Cao Y, Kurganov A, Liu Y, Xin R. Flux globalization based well-balanced path-conservative central-upwind schemes for shallow water models. J. Sci. Comput., 2022, 92(2): 69,
CrossRef Google scholar
[12.]
Caselles V, Donat R, Haro G. Flux gradient and source term balancing for certain high resolution shock capturing schemes. Comput. Fluids, 2009, 38: 16-36,
CrossRef Google scholar
[13.]
Castro MJ, Fernández-Nieto ED, Ferreriro AM, García-Rodríguez JA, Parés C. High order extensions of Roe schemes for two-dimensional nonconservative hyperbolic systems. J. Sci. Comput., 2009, 39: 67-114,
CrossRef Google scholar
[14.]
Castro MJ, Morales de Luna T, Parés C. Du Q, Glowinsky R, Hintermüller M, Süly E. Well-balanced schemes and path-conservative numerical methods. Handbook of Numerical Methods for Hyperbolic Problems, 2017 18 Amsterdam Elsevier 131-175,
CrossRef Google scholar
[15.]
Castro MJ, Parés C. Well-balanced high-order finite volume methods for systems of balance laws. J. Sci. Comput., 2020, 82: 48,
CrossRef Google scholar
[16.]
Chiavassa G, Donat R. Point value multiscale algorithms for 2D compressible flows. SIAM J. Sci. Comput., 2001, 23(3): 805-823,
CrossRef Google scholar
[17.]
Chiavassa, G., Donat, R., Martínez-Gavara, A.: Cost-effective multiresolution schemes for shock computations. In: ESAIM. Proceedings, vol. 29, pp. 8–27 (2009)
[18.]
De Boor C. . A Practical Guide to Splines, 2001 Berlin Springer
[19.]
De la Asunción M, Castro MJ. Simulation of tsunamis generated by landslides using adaptive mesh refinement on GPU. J. Comput. Phys., 2017, 345: 91-110,
CrossRef Google scholar
[20.]
Deslauriers G, Dubuc S. Symmetric iterative interpolation processes. Constr. Approx., 1989, 5: 49-68,
CrossRef Google scholar
[21.]
Donat R, Martí MC, Martínez-Gavara A, Mulet P. Well-balanced adaptive mesh refinement for shallow water flows. J. Comput. Phys., 2014, 257: 937-953,
CrossRef Google scholar
[22.]
Donat R, Martínez-Gavara A. Hybrid second order schemes for scalar balance laws. J. Sci. Comput., 2011, 48: 52-69,
CrossRef Google scholar
[23.]
Dumbser M, Hidalgo A, Zanotti O. High order space-time adaptive ADER-WENO finite volume schemes for non-conservative hyperbolic systems. Comput. Methods Appl. Mech. Eng., 2014, 268: 359-387,
CrossRef Google scholar
[24.]
Dyn, N.: Subdivision schemes in computer-aided geometric design. In: Advances in Numerical Analysis, II, Wavelets, Subdivision Algorithms and Radial Basis Functions. Clarendon Press, Oxford, 1992. ll. Binary Subdivision Schemes, vol. 621, pp. 36–104 (1992)
[25.]
Fritsch FN, Butland J. A method for constructing local monotone piecewise cubic interpolants. SIAM J. Sci. Stat. Comput., 1984, 5(2): 200-304,
CrossRef Google scholar
[26.]
George DL. Adaptive finite volume methods with well-balanced Riemann solvers for modeling floods in rugged terrain: application to the Malpasset dam-break flood (France, 1959). Int. J. Numer. Methods Fluids, 2011, 66(8): 1000-1018,
CrossRef Google scholar
[27.]
Goutal, N., Maurel, F.: Proceedings of the 2nd Workshop on Dam Break Wave Simulation. EDF-DER Report HE-43/97/016/B, pp. 42–45 (1997)
[28.]
Greenberg JM, Leroux AY. A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal., 1996, 33(1): 1-16,
CrossRef Google scholar
[29.]
Harten A. Multiresolution algorithms for the numerical solution of hyperbolic conservation laws. Commun. Pure Appl. Math., 1995, 48: 1305-1342,
CrossRef Google scholar
[30.]
Harten A, Engquist B, Osher S, Chakravarthy SR. Uniformly high order accurate essentially non-oscillatory schemes III. J. Comput. Phys., 1987, 131(1): 3-47,
CrossRef Google scholar
[31.]
LeVeque RJ. Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm. J. Comput. Phys., 1998, 146(1): 346-365,
CrossRef Google scholar
[32.]
Levy D, Puppo G, Russo G. Compact central WENO schemes for multidimensional conservation laws. SIAM J. Sci. Comput., 2000, 22(2): 656-672,
CrossRef Google scholar
[33.]
Martínez-Gavara A, Donat R. A hybrid second order scheme for shallow water flows. J. Sci. Comput., 2011, 48: 241-257,
CrossRef Google scholar
[34.]
Rault A, Chiavassa G, Donat R. Shock-vortex interactions at high Mach numbers. J. Sci. Comput., 2003, 19: 347-371,
CrossRef Google scholar
[35.]
Shu C-W, Osher S. Efficient implementation of essentially nonoscillatory shock-capturing schemes II. J. Comput. Phys., 1989, 83(1): 32-78,
CrossRef Google scholar
[36.]
Sjögreen B. Numerical experiments with the multiresolution scheme for the compressible Euler equations. J. Comput. Phys., 1995, 117: 251-261,
CrossRef Google scholar
[37.]
Vázquez-Cendón ME. Improved treatment of source terms in upwind schemes for the shallow water equations in channels with irregular geometry. J. Comput. Phys., 1999, 148: 497-526,
CrossRef Google scholar
[38.]
Xing Y, Shu C-W. A new approach of high order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms. Commun. Comput. Phys., 2006, 1(1): 100-134
Funding
Ministerio de Ciencia e Innovación(PID2021-125709OB-C21); Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital, Generalitat Valenciana(CIAICO/2021/224); Universitat de Valencia

Accesses

Citations

Detail

Sections
Recommended

/