Model Change Active Learning in Graph-Based Semi-supervised Learning
Kevin S. Miller, Andrea L. Bertozzi
Model Change Active Learning in Graph-Based Semi-supervised Learning
Active learning in semi-supervised classification involves introducing additional labels for unlabelled data to improve the accuracy of the underlying classifier. A challenge is to identify which points to label to best improve performance while limiting the number of new labels. “Model Change” active learning quantifies the resulting change incurred in the classifier by introducing the additional label(s). We pair this idea with graph-based semi-supervised learning (SSL) methods, that use the spectrum of the graph Laplacian matrix, which can be truncated to avoid prohibitively large computational and storage costs. We consider a family of convex loss functions for which the acquisition function can be efficiently approximated using the Laplace approximation of the posterior distribution. We show a variety of multiclass examples that illustrate improved performance over prior state-of-art.
Active learning / Graph-based methods / Semi-supervised learning (SSL) / Graph Laplacian
[1.] |
Ash, J.T., Zhang, C., Krishnamurthy, A., Langford, J., Agarwal, A.: Deep batch active learning by diverse, uncertain gradient lower bounds. In: 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26–30 (2020). OpenReview.net
|
[2.] |
Balcan, M.-F., Beygelzimer, A., Langford, J.: Agnostic active learning. In: Proceedings of the 23rd International Conference on Machine Learning. ICML’06, pp. 65–72. Association for Computing Machinery, Pittsburgh, Pennsylvania, USA (2006). https://doi.org/10.1145/1143844.1143853
|
[3.] |
|
[4.] |
|
[5.] |
|
[6.] |
|
[7.] |
|
[8.] |
|
[9.] |
|
[10.] |
Cai, W., Zhang, Y., Zhou, J.: Maximizing expected model change for active learning in regression. In: 2013 IEEE 13th International Conference on Data Mining, pp. 51–60 (2013). https://doi.org/10.1109/ICDM.2013.104
|
[11.] |
Calder, J., Cook, B., Thorpe, M., Slepčev, D.: Poisson learning: graph-based semi-supervised learning at very low label rates. In: Proceedings of the 37th International Conference on Machine Learning, pp. 1306–1316. Proceedings of Machine Learning Research, Online (2020)
|
[12.] |
|
[13.] |
Chen, B., Miller, K., Bertozzi, A., Schwenk, J.: Graph-based active learning for surface water and sediment detection in multispectral images (2022). Submitted to IEEE Transactions on Geoscience and Remote Sensing
|
[14.] |
|
[15.] |
Dasarathy, G., Nowak, R., Zhu, X.: S2: an efficient graph based active learning algorithm with application to nonparametric classification. In: Conference on Learning Theory, pp. 503–522 (2015)
|
[16.] |
Dasgupta, S., Hsu, D.: Hierarchical sampling for active learning. In: Proceedings of the 25th International Conference on Machine Learning. ICML’08, pp. 208–215. Association for Computing Machinery, Helsinki, Finland (2008). https://doi.org/10.1145/1390156.1390183
|
[17.] |
|
[18.] |
|
[19.] |
Gal, Y., Islam, R., Ghahramani, Z.: Deep Bayesian active learning with image data. In: Proceedings of the 34th International Conference on Machine Learning, pp. 1183–1192. Journal of Machine Learning Research, Sydney, Australia (2017)
|
[20.] |
|
[21.] |
|
[22.] |
Guillory, A., Bilmes, J.: Interactive submodular set cover. In: Proceedings of the 27th International Conference on Machine Learning (ICML), pp. 415–422 (2010)
|
[23.] |
|
[24.] |
Hoi, S.C.H., Jin, R., Zhu, J., Lyu, M.R.: Semi-supervised SVM batch mode active learning for image retrieval. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–7 (2008). https://doi.org/10.1109/CVPR.2008.4587350
|
[25.] |
Houlsby, N., Huszár, F., Ghahramani, Z., Lengyel, M.: Bayesian active learning for classification and preference learning. arXiv:1112.5745 (2011)
|
[26.] |
Ji, M., Han, J.: A variance minimization criterion to active learning on graphs. In: Artificial Intelligence and Statistics, pp. 556–564 (2012)
|
[27.] |
Jiang, B., Zhang, Z., Lin, D., Tang, J., Luo, B.: Semi-supervised learning with graph learning-convolutional networks. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11305–11312 (2019). https://doi.org/10.1109/CVPR.2019.01157
|
[28.] |
Jiang, H., Gupta, M.R.: Bootstrapping for batch active sampling. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3086–3096. Association for Computing Machinery, New York, USA (2021). https://doi.org/10.1145/3447548.3467076
|
[29.] |
|
[30.] |
|
[31.] |
Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: 5th International Conference on Learning Representations, ICLR (2017)
|
[32.] |
|
[33.] |
Kushnir, D., Venturi, L.: Diffusion-based deep active learning. arXiv:2003.10339 (2020). Accessed 2020-06-11
|
[34.] |
Lecun, Y., Cortes, C., Burges, C.C.J.: The MNIST Database of Handwritten Digits (2010). http://yann.lecun.com/exdb/mnist/
|
[35.] |
Lewis, D.D., Gale, W.A.: A sequential algorithm for training text classifiers. In: Proceedings of the 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. SIGIR’94, pp. 3–12. Springer, Berlin, Heidelberg (1994)
|
[36.] |
|
[37.] |
|
[38.] |
Ma, Y., Huang, T.-K., Schneider, J.G.: Active search and bandits on graphs using Σ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma$$\end{document}-optimality. In: Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI) (2015)
|
[39.] |
|
[40.] |
|
[41.] |
Miller, K., Li, H., Bertozzi, A.L.: Efficient graph-based active learning with probit likelihood via Gaussian approximations. In: ICML Workshop on Real-World Experiment Design and Active Learning (2020)
|
[42.] |
Mirzasoleiman, B.: Big data summarization using submodular functions. PhD thesis, ETH Zurich (2017)
|
[43.] |
|
[44.] |
|
[45.] |
|
[46.] |
|
[47.] |
Sener, O., Savarese, S.: Active learning for convolutional neural networks: a core-set approach. In: International Conference on Learning Representations (2018). https://openreview.net/forum?id=H1aIuk-RW
|
[48.] |
Settles, B.: Active Learning. Synthesis Lectures on Artificial Intelligence and Machine Learning. Springer Nature, Switzerland (2012). https://doi.org/10.2200/S00429ED1V01Y201207AIM018
|
[49.] |
|
[50.] |
|
[51.] |
Vapnik, V.N.: Statistical learning theory. In: Wiley Series in Adaptive and Learning Systems for Signal Processing, Communication and Control. Wiley, New York (1998)
|
[52.] |
|
[53.] |
Williams, C.K.I., Seeger, M.: Using the Nyström method to speed Up kernel machines. In: Leen, T.K., Dietterich, T.G., Tresp, V. (eds.) Advances in Neural Information Processing Systems 13, pp. 682–688. MIT Press (2001). http://papers.nips.cc/paper/1866-using-the-nystrom-method-to-speed-up-kernel-machines.pdf Accessed 2020-07-24
|
[54.] |
Zelnik-Manor, L., Perona, P.: Self-tuning spectral clustering. In: Advances in Neural Information Processing Systems 17, pp. 1601–1608. MIT Press, Cambridge, Massachusetts, USA (2004)
|
[55.] |
Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised learning using Gaussian fields and harmonic functions. In: Proceedings of the Twentieth International Conference on International Conference on Machine Learning. ICML’03, pp. 912–919. AAAI Press, Washington, DC, USA (2003a)
|
[56.] |
Zhu, X., Lafferty, J., Ghahramani, Z.: Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions. In: ICML 2003 Workshop on the Continuum from Labeled to Unlabeled Data in Machine Learning and Data Mining, pp. 58–65 (2003b)
|
/
〈 | 〉 |