Dispersion in Shallow Moment Equations

Ullika Scholz, Julia Kowalski, Manuel Torrilhon

Communications on Applied Mathematics and Computation ›› 2023, Vol. 6 ›› Issue (4) : 2155-2195. DOI: 10.1007/s42967-023-00325-2
Original Paper

Dispersion in Shallow Moment Equations

Author information +
History +

Abstract

Shallow moment models are extensions of the hyperbolic shallow water equations. They admit variations in the vertical profile of the horizontal velocity. This paper introduces a non-hydrostatic pressure to this framework and shows the systematic derivation of dimensionally reduced dispersive equation systems which still hold information on the vertical profiles of the flow variables. The derivation from a set of balance laws is based on a splitting of the pressure followed by a same-degree polynomial expansion of the velocity and pressure fields in a vertical direction. Dimensional reduction is done via Galerkin projections with weak enforcement of the boundary conditions at the bottom and at the free surface. The resulting equation systems of order zero and one are presented in linear and nonlinear forms for Legendre basis functions and an analysis of dispersive properties is given. A numerical experiment shows convergence towards the resolved reference model in the linear stationary case and demonstrates the reconstruction of vertical profiles.

Keywords

Shallow flow / Free surface flow / Non-hydrostatic model / Dispersive equations / Moment approximation / Hyperbolic systems

Cite this article

Download citation ▾
Ullika Scholz, Julia Kowalski, Manuel Torrilhon. Dispersion in Shallow Moment Equations. Communications on Applied Mathematics and Computation, 2023, 6(4): 2155‒2195 https://doi.org/10.1007/s42967-023-00325-2

References

[1.]
Airy GB. . Tides and waves, 1845 London B. Fellowes
[2.]
Baker JL, Barker T, Gray JMNT. A two-dimensional depth-averaged $\mu (I)$rheology for dense granular avalanches. J. Fluid Mech., 2016, 787: 367-395
[3.]
Barros R, Gavrilyuk SL. Dispersive nonlinear waves in two-layer flows with free surface part II. Large amplitude solitary waves embedded into the continuous spectrum. Stud. Appl. Math., 2007, 119(3): 213-251
[4.]
Barros R, Gavrilyuk SL, Teshukov VM. Dispersive nonlinear waves in two-layer flows with free surface. I. Model derivation and general properties. Stud. Appl. Math., 2007, 119(3): 191-211
[5.]
Barthelemy E. Nonlinear shallow water theories for coastal waves. Surv. Geophys., 2004, 25(3): 315-337
[6.]
Bonneton P, Chazel F, Lannes D, Marche F, Tissier M. A splitting approach for the fully nonlinear and weakly dispersive Green-Naghdi model. J. Comput. Phys., 2011, 230(4): 1479-1498
[7.]
Casulli V. A semi-implicit finite difference method for non-hydrostatic, free-surface flows. Int. J. Numer. Methods Fluids, 1999, 30(4): 425-440
[8.]
Chanson H. . Environmental Hydraulics for Open Channel Flows, 2004 Oxford Butterworth-Heinemann
[9.]
Christen M, Kowalski J, Bartelt P. RAMMS: numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Reg. Sci. Technol., 2010, 63(1): 1-14
[10.]
Cienfuegos R, Barthelemy E, Bonneton P. A fourth-order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq-type equations. Part I: model development and analysis. Int. J. Numer. Methods Fluids, 2006, 51(11): 1217-1253
[11.]
Escalante C, Fernandez-Nieto ED, Morales de Luna T, Castro MJ. An efficient two-layer non-hydrostatic approach for dispersive water waves. J. Sci. Comput., 2019, 79(1): 273-320
[12.]
Escalante C, Morales de Luna T. A general non-hydrostatic hyperbolic formulation for Boussinesq dispersive shallow flows and its numerical approximation. J. Sci. Comput., 2020, 83(3): 62
[13.]
Escalante C, Morales de Luna T, Castro MJ. Non-hydrostatic pressure shallow flows: GPU implementation using finite volume and finite difference scheme. Appl. Math. Comput., 2018, 338: 631-659
[14.]
Favrie N, Gavrilyuk S. A rapid numerical method for solving Serre-Green-Naghdi equations describing long free surface gravity waves. Nonlinearity, 2017, 30(7): 2718-2736
[15.]
Fernandez-Nieto ED, Parisot M, Penel Y, Sainte-Marie J. A hierarchy of dispersive layer-averaged approximations of Euler equations for free surface flows. Commun. Math. Sci., 2018, 16(5): 1169-1202
[16.]
French RH. . Open-Channel Hydraulics, 1985 New York McGraw-Hill
[17.]
Garres-Diaz J, Castro Diaz MJ, Koellermeier J, Morales de Luna T. Shallow water moment models for bedload transport problems. Commun. Comput. Phys., 2021, 30(3): 903-941
[18.]
Garres-Diaz J, Escalante C, Morales de Luna T, Castro Diaz MJ. A general vertical decomposition of Euler equations: multilayer-moment models. Appl. Numer. Math., 2023, 183: 236-262
[19.]
Grad H. On the kinetic theory of rarefied gases. Commun. Pure Appl. Math., 1949, 2: 331-407
[20.]
Gray JMNT, Edwards AN. A depth-averaged $\mu (I)$-rheology for shallow granular free-surface flows. J. Fluid Mech., 2014, 755: 503
[21.]
Green AE, Naghdi PM. A derivation of equations for wave propagation in water of variable depth. J. Fluid Mech., 1976, 78(2): 237-246
[22.]
Hagemeier T, Hartmann M, Thevenin D. Practice of vehicle soiling investigations: a review. Int. J. Multiph. Flow, 2011, 37(8): 860-875
[23.]
Houghton DD, Kasahara A. Nonlinear shallow fluid flow over an isolated ridge. Commun. Pure Appl. Math., 1968, 21(1): 1-23
[24.]
Kalnay E. . Atmospheric Modeling, Data Assimilation and Predictability, 2003 Cambridge Cambridge University Press
[25.]
Kazolea M, Delis AI, Synolakis CE. Numerical treatment of wave breaking on unstructured finite volume approximations for extended Boussinesq-type equations. J. Comput. Phys., 2014, 271: 281-305
[26.]
Kern M, Bartelt P, Sovilla B, Buser O. Measured shear rates in large dry and wet snow avalanches. J. Glaciol., 2009, 55(190): 327-338
[27.]
Koellermeier J, Rominger M. Analysis and numerical simulation of hyperbolic shallow water moment equations. Commun. Comput. Phys., 2020, 28(3): 1038-1084
[28.]
Kowalski J, McElwaine JN. Shallow two-component gravity-driven flows with vertical variation. J. Fluid Mech., 2013, 714: 434-462
[29.]
Kowalski J, Torrilhon M. Moment approximations and model cascades for shallow flow. Commun. Comput. Phys., 2019, 25(3): 669-702
[30.]
Lannes D. . The Water Waves Problem: Mathematical Analysis and Asymptotics. Mathematical Surveys and Monographs, 2013 Providence American Mathematical Society
[31.]
Le Metayer O, Gavrilyuk S, Hank S. A numerical scheme for the Green-Naghdi model. J. Comput. Phys., 2010, 229: 2034-2045
[32.]
LeVeque RJ. . Finite Volume Methods for Hyperbolic Problems, 2002 Cambridge Cambridge University Press
[33.]
Lin P, Li CW. A σ-coordinate three-dimensional numerical model for surface wave propagation. Int. J. Numer. Methods Fluids, 2002, 38(11): 1045-1068
[34.]
Ma G, Shi F, Kirby JT. Shock-capturing non-hydrostatic model for fully dispersive surface wave processes. Ocean Model., 2012, 43–44: 22-35
[35.]
Madsen PA, Murray R, Sorensen OR. A new form of the Boussinesq equations with improved linear dispersion characteristics. Coast. Eng., 1991, 15(4): 371-388
[36.]
Madsen PA, Bingham HB, Liu H. A new Boussinesq method for fully nonlinear waves from shallow to deep water. J. Fluid Mech., 2002, 462: 1-30
[37.]
Mergili M, Jan-Thomas F, Krenn J, Pudasaini SP. r.avaflow v1, an advanced open-source computational framework for the propagation and interaction of two-phase mass flows. Geosci. Model Dev., 2017, 10(2): 553
[38.]
Miles J, Salmon R. Weakly dispersive nonlinear gravity waves. J. Fluid Mech., 1985, 157: 519-531
[39.]
Miles JW. The Korteweg-de Vries equation: a historical essay. J. Fluid Mech., 1981, 106: 131-147
[40.]
Nadiga BT. An adaptive discrete-velocity model for the shallow water equations. J. Comput. Phys., 1995, 121: 271-280
[41.]
Nadiga BT, Margolin LG, Smolarkiewicz PK. Different approximations of shallow fluid flow over an obstacle. Phys. Fluids, 1996, 8(8): 2066-2077
[42.]
Nagl G, Hubl J, Kaitna R. Velocity profiles and basal stresses in natural debris flows. Earth Surf. Process. Landf., 2020, 45(8): 1764-1776
[43.]
Noelle S, Parisot M, Tscherpel T. A class of boundary conditions for time-discrete Green-Naghdi equations with bathymetry. SIAM J. Numer. Anal., 2022, 60: 2681-2712
[44.]
Panda N, et al.. Discontinuous Galerkin methods for solving Boussinesq-Green-Naghdi equations in resolving non-linear and dispersive surface water waves. J. Comput. Phys., 2014, 273: 572-588
[45.]
Parisot M. Entropy-satisfying scheme for a hierarchy of dispersive reduced models of free surface flow. Int. J. Numer. Methods Fluids, 2019, 91(10): 509-531
[46.]
Peregrine DH. Long waves on a beach. J. Fluid Mech., 1967, 27(4): 815-827
[47.]
Phillips NA. A coordinate system having some special advantages for numerical forecasting. J. Meteorol., 1956, 14: 184-185
[48.]
Pudasaini SP, Hutter K. . Avalanche Dynamics: Dynamics of Rapid Flows of Dense Granular Avalanches, 2007 Berlin Springer
[49.]
Ruyer-Quil C, Manneville P. Further accuracy and convergence results on the modeling of flows down inclined planes by weighted-residual approximations. Phys. Fluids, 2002, 14(1): 170-183
[50.]
Ruyer-Quil C, Manneville P. Improved modeling of flows down inclined planes. Eur. Phys. J. B, 2000, 15: 357-369
[51.]
Sanvitale N, Bowman ET. Using PIV to measure granular temperature in saturated unsteady polydisperse granular flows. Granul. Matter, 2016, 18(3): 1-12
[52.]
Savage SB, Hutter K. The motion of a finite mass of granular material down a rough incline. J. Fluid Mech., 1989, 199: 177-215
[53.]
Schaefer M, Bugnion L. Velocity profile variations in granular flows with changing boundary conditions: insights from experiments. Phys. Fluids, 2013, 25(6)
[54.]
Scholz, U., Kowalski, J., Torrilhon, M.: GitHub Repository: Dispersive Shallow Moment Models. In: Source Code www.github.com/ShallowFlowMoments (2023)
[55.]
Stansby PK, Zhou JG. Shallow-water flow solver with non-hydrostatic pressure: 2D vertical plane problems. Int. J. Numer. Methods Fluids, 1998, 28(3): 541-563
[56.]
Steffler PM, Yee-Chung J. Depth averaged and moment equations for moderately shallow free surface flow. J. Hydraul. Res., 1993, 31(1): 5-17
[57.]
Su CH, Gardner CS. Korteweg-de Vries equation and generalizations. III. Derivation of the Korteweg-de Vries equation and Burgers equation. J. Math. Phys., 1969, 10(3): 536-539
[58.]
Torrilhon M. Modeling nonequilibrium gas flow based on moment equations. Annu. Rev. Fluid Mech., 2016, 48: 429-458
[59.]
Wei G, Kirby JT, Grilli S, Subramanya R. A fully nonlinear Boussinesq model for surface waves: I. Highly nonlinear unsteady waves. J. Fluid Mech., 1995, 294: 71-92
[60.]
Whitham GB. . Linear and Nonlinear Waves. Pure and Applied Mathematics: a Wiley Series of Texts, Monographs and Tracts, 2011 Hoboken Wiley
[61.]
Zhang Y, Kennedy A, Panda N, Dawson C, Westerink J. Boussinesq-Green-Naghdi rotational water wave theory. Coast. Eng., 2013, 73: 13-27
Funding
Deutsche Forschungsgemeinschaft(320021702/RTG2326); RWTH Aachen University (3131)

Accesses

Citations

Detail

Sections
Recommended

/