Monolithic Convex Limiting for Legendre-Gauss-Lobatto Discontinuous Galerkin Spectral-Element Methods

Andrés M. Rueda-Ramírez, Benjamin Bolm, Dmitri Kuzmin, Gregor J. Gassner

Communications on Applied Mathematics and Computation ›› 2024, Vol. 6 ›› Issue (3) : 1860-1898. DOI: 10.1007/s42967-023-00321-6
Original Paper

Monolithic Convex Limiting for Legendre-Gauss-Lobatto Discontinuous Galerkin Spectral-Element Methods

Author information +
History +

Abstract

We extend the monolithic convex limiting (MCL) methodology to nodal discontinuous Galerkin spectral-element methods (DGSEMS). The use of Legendre-Gauss-Lobatto (LGL) quadrature endows collocated DGSEM space discretizations of nonlinear hyperbolic problems with properties that greatly simplify the design of invariant domain-preserving high-resolution schemes. Compared to many other continuous and discontinuous Galerkin method variants, a particular advantage of the LGL spectral operator is the availability of a natural decomposition into a compatible subcell flux discretization. Representing a high-order spatial semi-discretization in terms of intermediate states, we perform flux limiting in a manner that keeps these states and the results of Runge-Kutta stages in convex invariant domains. In addition, local bounds may be imposed on scalar quantities of interest. In contrast to limiting approaches based on predictor-corrector algorithms, our MCL procedure for LGL-DGSEM yields nonlinear flux approximations that are independent of the time-step size and can be further modified to enforce entropy stability. To demonstrate the robustness of MCL/DGSEM schemes for the compressible Euler equations, we run simulations for challenging setups featuring strong shocks, steep density gradients, and vortex dominated flows.

Keywords

Structure-preserving schemes / Subcell flux limiting / Monolithic convex limiting (MCL) / Discontinuous Galerkin spectral-element methods (DGSEMS) / Legendre-Gauss-Lobatto (LGL) nodes

Cite this article

Download citation ▾
Andrés M. Rueda-Ramírez, Benjamin Bolm, Dmitri Kuzmin, Gregor J. Gassner. Monolithic Convex Limiting for Legendre-Gauss-Lobatto Discontinuous Galerkin Spectral-Element Methods. Communications on Applied Mathematics and Computation, 2024, 6(3): 1860‒1898 https://doi.org/10.1007/s42967-023-00321-6

References

[1.]
Anderson R, Dobrev V, Kolev T, Kuzmin D, Quezada de Luna M, Rieben R, Tomov V. High-order local maximum principle preserving (MPP) discontinuous Galerkin finite element method for the transport equation. J. Comput. Phys., 2017, 334: 102-124
[2.]
Bacigaluppi, P., Abgrall, R., Tokareva, S.: “A posteriori” limited high order and robust schemes for transient simulations of fluid flows in gas dynamics. J. Comput. Phys. 476, 111898 (2023)
[3.]
Barth, T.J.: Numerical methods for gasdynamic systems on unstructured meshes. In: An Introduction to Recent Developments in Theory and Numerics for Conservation Laws, pp. 195–285. Springer, Berlin (1999)
[4.]
Chandrashekar P. Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier-Stokes equations. Commun. Comput. Phys., 2013, 14(5): 1252-1286
[5.]
Cheng J, Shu C-W. Positivity-preserving Lagrangian scheme for multi-material compressible flow. J. Comput. Phys., 2014, 257: 143-168
[6.]
Cotter CJ, Kuzmin D. Embedded discontinuous Galerkin transport schemes with localised limiters. J. Comput. Phys., 2016, 311: 363-373
[7.]
Diot S, Clain S, Loubère R. Improved detection criteria for the multi-dimensional optimal order detection (MOOD) on unstructured meshes with very high-order polynomials. Comput. Fluids, 2012, 64: 43-63
[8.]
Dobrev V, Kolev T, Kuzmin D, Rieben R, Tomov V. Sequential limiting in continuous and discontinuous Galerkin methods for the Euler equations. J. Comput. Phys., 2018, 356: 372-390
[9.]
Dumbser M, Zanotti O, Loubère R, Diot S. A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws. J. Comput. Phys., 2014, 278: 47-75
[10.]
Fisher TC, Carpenter MH. High-order entropy stable finite difference schemes for nonlinear conservation laws: finite domains. J. Comput. Phys., 2013, 252: 518-557
[11.]
Fryxell B, Olson K, Ricker P, Timmes F, Zingale M, Lamb D, MacNeice P, Rosner R, Truran J, Tufo H. Flash: an adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes. Astrophys. J. Suppl. Ser., 2000, 131(1): 273
[12.]
Galbraith, M., Murman, S., Kim, C., Persson, P., Fidkowski, K., Glasby, R., Hillewaert, K., Ahrabi, B.: 5th International Workshop on High-Order CFD Methods. http://how5.cenaero.be. AIAA Sci. Technol. Forum Expos. (2017)
[13.]
Gassner GJ. A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods. SIAM J. Sci. Comput., 2013, 35(3): 1233-1253
[14.]
Gassner GJ, Winters AR, Kopriva DA. Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations. J. Comput. Phys., 2016, 327: 39-66
[15.]
Guermond J-L, Nazarov M, Popov B, Tomas I. Second-order invariant domain preserving approximation of the Euler equations using convex limiting. SIAM J. Sci. Comput., 2018, 40(5): 3211-3239
[16.]
Guermond J-L, Pasquetti R, Popov B. Entropy viscosity method for nonlinear conservation laws. J. Comput. Phys., 2011, 230(11): 4248-4267
[17.]
Guermond J-L, Popov B. Invariant domains and first-order continuous finite element approximation for hyperbolic systems. SIAM J. Numer. Anal., 2016, 54(4): 2466-2489
[18.]
Guermond J-L, Popov B. Fast estimation from above of the maximum wave speed in the Riemann problem for the Euler equations. J. Comput. Phys., 2016, 321: 908-926
[19.]
Guermond J-L, Popov B. Invariant domains and second-order continuous finite element approximation for scalar conservation equations. SIAM J. Numer. Anal., 2017, 55(6): 3120-3146
[20.]
Guermond J-L, Popov B, Tomas I. Invariant domain preserving discretization-independent schemes and convex limiting for hyperbolic systems. Comput. Methods Appl. Mech. Eng., 2019, 347: 143-175
[21.]
Ha Y, Gardner CL, Gelb A, Shu C-W. Numerical simulation of high Mach number astrophysical jets with radiative cooling. J. Sci. Comput., 2005, 24(1): 29-44
[22.]
Hajduk H. Monolithic convex limiting in discontinuous Galerkin discretizations of hyperbolic conservation laws. Comput. Math. Appl., 2021, 87: 120-138
[23.]
Hajduk H, Kuzmin D, Kolev T, Abgrall R. Matrix-free subcell residual distribution for Bernstein finite element discretizations of linear advection equations. Comput. Methods Appl. Mech. Eng., 2020, 359
[24.]
Harten A, Lax PD, van Leer B. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev., 1983, 25(1): 35-61
[25.]
Hennemann S, Rueda-Ramírez AM, Hindenlang FJ, Gassner GJ. A provably entropy stable subcell shock capturing approach for high order split form DG for the compressible Euler equations. J. Comput. Phys., 2021, 426
[26.]
Ismail F, Roe PL. Affordable, entropy-consistent Euler flux functions II: entropy production at shocks. J. Comput. Phys., 2009, 228(15): 5410-5436
[27.]
Johnson C, Szepessy A, Hansbo P. On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws. Math. Comput., 1990, 54(189): 107-129
[28.]
Krivodonova L, Xin J, Remacle J-F, Chevaugeon N, Flaherty JE. Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws. Appl. Numer. Math., 2004, 48(3/4): 323-338
[29.]
Kuzmin D. Monolithic convex limiting for continuous finite element discretizations of hyperbolic conservation laws. Comput. Methods Appl. Mech. Eng., 2020, 361
[30.]
Kuzmin D, Hajduk H, Rupp A. Limiter-based entropy stabilization of semi-discrete and fully discrete schemes for nonlinear hyperbolic problems. Comput. Methods Appl. Mech. Eng., 2022, 389
[31.]
Kuzmin D, Klyushnev N. Limiting and divergence cleaning for continuous finite element discretizations of the MHD equations. J. Comput. Phys., 2020, 407
[32.]
Kuzmin D, Löhner R, Turek S. . Flux-Corrected Transport: Principles, Algorithms, and Applications, 2012 2 Dordrecht Springer
[33.]
Kuzmin D, Möller M, Shadid JN, Shashkov M. Failsafe flux limiting and constrained data projections for equations of gas dynamics. J. Comput. Phys., 2010, 229(23): 8766-8779
[34.]
Kuzmin D, Quezada de Luna M. Subcell flux limiting for high-order Bernstein finite element discretizations of scalar hyperbolic conservation laws. J. Comput. Phys., 2020, 411
[35.]
Kuzmin D, Quezada de Luna M. Entropy conservation property and entropy stabilization of high-order continuous Galerkin approximations to scalar conservation laws. Comput. Fluids, 2020, 213
[36.]
Kuzmin D, Quezada de Luna M, Ketcheson DI, Grüll J. Bound-preserving convex limiting for high-order Runge-Kutta time discretizations of hyperbolic conservation laws. J. Sci. Comput., 2022, 91: 21
[37.]
Kuzmin, D., Vedral, J.: Dissipation-based WENO stabilization of high-order finite element methods for scalar conservation laws. arXiv:2212.14224 (2022)
[38.]
Lax P, Wendroff B. Systems of conservation laws. Commun. Pure Appl. Math., 1960, 13(2): 217-237
[39.]
Lin, Y., Chan, J., Thomas, I.: A positivity preserving strategy for entropy stable discontinuous Galerkin discretizations of the compressible Euler and Navier-Stokes equations. J. Comput. Phys. 475, 111850 (2023)
[40.]
Liu, Y., Lu, J., Shu, C.-W.: An essentially oscillation-free discontinuous Galerkin method for hyperbolic systems. SIAM J. Sci. Comput. 44(1), A230–A259 (2022)
[41.]
Lohmann C, Kuzmin D. Synchronized flux limiting for gas dynamics variables. J. Comput. Phys., 2016, 326: 973-990
[42.]
Lohmann C, Kuzmin D, Shadid JN, Mabuza S. Flux-corrected transport algorithms for continuous Galerkin methods based on high order Bernstein finite elements. J. Comput. Phys., 2017, 344: 151-186
[43.]
Löhner R. . Applied Computational Fluid Dynamics Techniques: an Introduction Based on Finite Element Methods, 2008 2 Chichester Wiley
[44.]
Lv Y, See YC, Ihme M. An entropy-residual shock detector for solving conservation laws using high-order discontinuous Galerkin methods. J. Comput. Phys., 2016, 322: 448-472
[45.]
Maier M, Kronbichler M. Efficient parallel 3D computation of the compressible Euler equations with an invariant-domain preserving second-order finite-element scheme. ACM Trans. Parall. Comput., 2021, 8(3): 1-30
[46.]
Markert J, Gassner G, Walch S. A sub-element adaptive shock capturing approach for discontinuous Galerkin methods. Commun. Appl. Math. Comput., 2023, 5: 679-721
[47.]
Mateo-Gabín, A., Rueda-Ramírez, A.M., Valero, E., Rubio, G.: Entropy-stable flux-differencing formulation with Gauss nodes for the DGSEM. arXiv:2211.05066 (2022)
[48.]
Moe SA, Rossmanith JA, Seal DC. Positivity-preserving discontinuous Galerkin methods with Lax-Wendroff time discretizations. J. Sci. Comput., 2017, 71: 44-70
[49.]
Nazarov M. Convergence of a residual based artificial viscosity finite element method. Comput. Math. Appl., 2013, 65(4): 616-626
[50.]
Pazner W. Sparse invariant domain preserving discontinuous Galerkin methods with subcell convex limiting. Comput. Methods Appl. Mech. Eng., 2021, 382
[51.]
Persson, P.-O., Peraire, J.: Sub-cell shock capturing for discontinuous Galerkin methods. In: 44th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2006-112 (2006)
[52.]
Perthame B, Shu C-W. On positivity preserving finite volume schemes for Euler equations. Numer. Math., 1996, 73: 119-130
[53.]
Quezada de Luna, M., Ketcheson, D.I.: Maximum principle preserving space and time flux limiting for diagonally implicit Runge-Kutta discretizations of scalar convection-diffusion equations. J. Sci. Comput. 92, 102 (2022)
[54.]
Ranocha H. . Generalised Summation-by-Parts Operators and Entropy Stability of Numerical Methods for Hyperbolic Balance Laws, 2018 Göttingen Cuvillier Verlag
[55.]
Ranocha, H., Gassner, G.J.: Preventing pressure oscillations does not fix local linear stability issues of entropy-based split-form high-order schemes. Commun. Appl. Math. Comput. 4, 880–903 (2022)
[56.]
Ranocha, H., Schlottke-Lakemper, M., Chan, J., Rueda-Ramírez, A.M., Winters, A.R., Hindenlang, F., Gassner, G.J.: Efficient implementation of modern entropy stable and kinetic energy preserving discontinuous Galerkin methods for conservation laws. arXiv:2112.10517 (2021)
[57.]
Ranocha H, Schlottke-Lakemper M, Winters AR, Faulhaber E, Chan J, Gassner G. Adaptive numerical simulations with Trixi.jl: a case study of Julia for scientific computing. Proc. JuliaCon Confer., 2022, 1(1): 77
[58.]
Rueda-Ramírez, A.M., Gassner, G.J.: A subcell finite volume positivity-preserving limiter for DGSEM discretizations of the Euler equations. arXiv:2102.06017 (2021)
[59.]
Rueda-Ramírez, A.M., Gassner, G.J.: A flux-differencing formula for split-form summation by parts discretizations of non-conservative systems: applications to subcell limiting for magneto-hydrodynamics. arXiv:2211.14009 (2022)
[60.]
Rueda-Ramírez AM, Hennemann S, Hindenlang FJ, Winters AR, Gassner GJ. An entropy stable nodal discontinuous Galerkin method for the resistive mhd equations. Part II: subcell finite volume shock capturing. J. Comput. Phys., 2021, 444
[61.]
Rueda-Ramírez AM, Pazner W, Gassner GJ. Subcell limiting strategies for discontinuous Galerkin spectral element methods. Comput. Fluids, 2022, 247
[62.]
Schlottke-Lakemper, M., Gassner, G.J., Ranocha, H., Winters, A.R.: Trixi.jl: adaptive high-order numerical simulations of hyperbolic PDEs in Julia. https://github.com/trixi-framework/Trixi.jl (2020)
[63.]
Schlottke-Lakemper, M., Winters, A.R., Ranocha, H., Gassner, G.J.: A purely hyperbolic discontinuous Galerkin approach for self-gravitating gas dynamics. J. Comput. Phys. 110467 (2021)
[64.]
Sedov LI. . Similarity and Dimensional Methods in Mechanics, 1959 USA Academic Press
[65.]
Selmin, V.: Finite element solution of hyperbolic equations. II. Two-dimensional case. Research Report RR-0708, INRIA (1987)
[66.]
Shima N, Kuya Y, Tamaki Y, Kawai S. Preventing spurious pressure oscillations in split convective form discretization for compressible flows. J. Comput. Phys., 2021, 427
[67.]
Tadmor E. A minimum entropy principle in the gas dynamics equations. Appl. Numer. Math., 1986, 2(3/4/5): 211-219
[68.]
Tadmor E. Entropy functions for symmetric systems of conservation laws. J. Math. Anal. Appl., 1987, 122(2): 355-359
[69.]
Tadmor, E.: Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numer. 12, 451–512 (2003)
[70.]
Thrussell, J., Lieberman, E., Ferguson, J.: Exactpack. Technical report, Los Alamos National Lab. (LANL), Los Alamos, NM (United States) (2023)
[71.]
Toro EF. . Riemann Solvers and Numerical Methods for Fluid Dynamics: a Practical Introduction, 2013 Berlin Springer
[72.]
Vilar F. A posteriori correction of high-order discontinuous Galerkin scheme through subcell finite volume formulation and flux reconstruction. J. Comput. Phys., 2019, 387: 245-279
[73.]
Vilar, F., Abgrall, R.: A posteriori local subcell correction of high-order discontinuous Galerkin scheme for conservation laws on two-dimensional unstructured grids. arXiv:2212.11358 (2022)
[74.]
Wu, X., Trask, N., Chan, J.: Entropy stable discontinuous Galerkin methods for the shallow water equations with subcell positivity preservation. arXiv:2112.07749 (2021)
[75.]
Zalesak ST. Fully multidimensional flux-corrected transport algorithms for fluids. J. Comput. Phys., 1979, 31(3): 335-362
[76.]
Zhang X, Shu C-W. On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys., 2010, 229(23): 8918-8934
[77.]
Zhang X, Xia Y, Shu C-W. Maximum-principle-satisfying and positivity-preserving high order discontinuous Galerkin schemes for conservation laws on triangular meshes. J. Sci. Comput., 2012, 50(1): 29-62
[78.]
Zhu J, Qiu J. Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method, III: unstructured meshes. J. Sci. Comput., 2009, 39(2): 293-321
Funding
Klaus Tschira Stiftung; Deutsche Forschungsgemeinschaft(KU 1530/23-3); Universit?t zu K?ln (1017)

Accesses

Citations

Detail

Sections
Recommended

/