Effect of Dynamic Pressure on the Shock Structure and Sub-shock Formation in a Mixture of Polyatomic Gases

Tommaso Ruggeri, Shigeru Taniguchi

Communications on Applied Mathematics and Computation ›› 2023, Vol. 6 ›› Issue (4) : 2196-2214. DOI: 10.1007/s42967-023-00320-7
Original Paper

Effect of Dynamic Pressure on the Shock Structure and Sub-shock Formation in a Mixture of Polyatomic Gases

Author information +
History +

Abstract

We study the shock structure and the sub-shock formation in a binary mixture of rarefied polyatomic gases, considering the dissipation only due to the dynamic pressure. We classify the regions depending on the concentration and the Mach number for which there may exist the sub-shock in the profile of shock structure in one or both constituents or not for prescribed values of the mass ratio of the constituents and the ratios of the specific heats. We compare the regions with the ones of the corresponding mixture of Eulerian gases and perform the numerical calculations of the shock structure for typical cases previously classified and confirm whether sub-shocks emerge.

Keywords

Shock structure / Mixture of gases / Rational extended thermodynamics (RET) / Polyatomic gases / Dynamic pressure / Sub-shock formation / Bulk viscosity

Cite this article

Download citation ▾
Tommaso Ruggeri, Shigeru Taniguchi. Effect of Dynamic Pressure on the Shock Structure and Sub-shock Formation in a Mixture of Polyatomic Gases. Communications on Applied Mathematics and Computation, 2023, 6(4): 2196‒2214 https://doi.org/10.1007/s42967-023-00320-7

References

[1.]
Arima T, Ruggeri T, Sugiyama M, Taniguchi S. Non-linear extended thermodynamics of real gases with 6 fields. Int. J. Non-Linear Mech., 2015, 72: 6-15
[2.]
Arima T, Ruggeri T, Sugiyama M, Taniguchi S. Galilean invariance and entropy principle for a system of balance laws of mixture type. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur., 2017, 28: 66-75
[3.]
Arima T, Taniguchi S, Ruggeri T, Sugiyama M. Extended thermodynamics of real gases with dynamic pressure: an extension of Meixner’s theory. Phys. Lett. A, 2012, 376(44): 2799-2803
[4.]
Artale V, Conforto F, Martalò G, Ricciardello A. Shock structure and multiple sub-shocks in grad 10-moment binary mixtures of monoatomic gases. Ric. Mat., 2019, 68(2): 485-502
[5.]
Bethe, H.A., Teller, E.: Deviations from Thermal Equilibrium in Shock Waves. Reprinted by Engineering Research Institute. University of Michigan, Michigan (1941)
[6.]
Bianchini S, Hanouzet B, Natalini R. Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy. Commun. Pure Appl. Math., 2007, 60: 1559-1622
[7.]
Bird GA. . Molecular Gas Dynamics and the Direct Simulation of Gas Flows, 1994 Oxford Oxford University Press
[8.]
Bisi M, Martalò G, Spiga G. Shock wave structure of multi-temperature Euler equations from kinetic theory for a binary mixture. Acta Appl. Math., 2014, 132(1): 95-105
[9.]
Boillat G, Ruggeri T. Hyperbolic principal subsystems: entropy convexity and subcharacteristic conditions. Arch. Ration. Mech. Anal., 1997, 137(4): 305-320
[10.]
Boillat G, Ruggeri T. On the shock structure problem for hyperbolic system of balance laws and convex entropy. Contin. Mech. Thermodyn., 1998, 10(5): 285-292
[11.]
Bose T. . High Temperature Gas Dynamics, 2004 Berlin Springer
[12.]
Brini F, Ruggeri T. On the Riemann problem with structure in extended thermodynamics. Suppl. Rend. Circ. Mat. Palermo, 2006, II(78): 31-43
[13.]
Brini, F., Ruggeri, T.: The Riemann problem for a binary non-reacting mixture of Euler fluids. In: Monaco, R., Pennisi, S., Rionero, S., Ruggeri, T. (eds.) Proceedings XII Int. Conference on Waves and Stability in Continuous Media, pp. 102–108. World Scientific, Singapore (2004)
[14.]
Brini, F., Ruggeri, T.: On the Riemann problem in extended thermodynamics. In: Proceedings of the 10th International Conference on Hyperbolic Problems (HYP2004), pp. 319–326. Yokohama Publisher Inc., Yokohama (2006)
[15.]
Conforto F, Mentrelli A, Ruggeri T. Shock structure and multiple sub-shocks in binary mixtures of Eulerian fluids. Ric. Mat., 2017, 66(1): 221-231
[16.]
De Groot SR, Mazur P. . Non-equilibrium Thermodynamics, 1962 Amsterdam North-Holland
[17.]
Djordjić, V., Pavić-Čolić, M., Torrilhon, M.: Consistent, explicit, and accessible Boltzmann collision operator for polyatomic gases. Phys. Rev. E 104, 025309 (2021)
[18.]
Gamba IM, Pavić-Čolić M. On the Cauchy problem for Boltzmann equation modeling a polyatomic gas. J. Math. Phys., 2023, 64
[19.]
Gilbarg D, Paolucci D. The structure of shock waves in the continuum theory of fluids. J. Rat. Mech. Anal., 1953, 2: 617
[20.]
Gouin H, Ruggeri T. Identification of an average temperature and a dynamical pressure in a multitemperature mixture of fluids. Phys. Rev. E, 2008, 78
[21.]
Haynes WM. . CRC Handbook of Chemistry and Physics, 2014 95 Boca Raton, FL CRC Press
[22.]
Kosuge S, Aoki K. Shock-wave structure for a polyatomic gas with large bulk viscosity. Phys. Rev. Fluids, 2018, 3
[23.]
Kosuge S, Aoki K, Goto T. Shock wave structure in polyatomic gases: numerical analysis using a model Boltzmann equation. AIP Conf. Proc., 2016, 1786(1)
[24.]
Liotta SF, Romano V, Russo G. Central schemes for balance laws of relaxation type. SIAM J. Numer. Anal., 2001, 38(4): 1337-1356
[25.]
Liu T-P. Linear and nonlinear large-time behavior of solutions of general systems of hyperbolic conservation laws. Commun. Pure Appl. Math., 1977, 30(6): 767-796
[26.]
Liu T-P. Large-time behavior of solutions of initial and initial-boundary value problems of a general system of hyperbolic conservation laws. Commun. Math. Phys., 1977, 55(2): 163-177
[27.]
Liu T-P. Ruggeri T. Nonlinear hyperbolic-dissipative partial differential equations. Recent Mathematical Methods in Nonlinear Wave Propagation Lecture Notes in Mathematics, 1996 Berlin, Heidelberg Springer 103-136
[28.]
Madjarević D, Pavić-Čolić M, Simić S. Shock structure and relaxation in the multi-component mixture of Euler fluids. Symmetry, 2021, 13(6): 955
[29.]
Mentrelli A, Ruggeri T. Asymptotic behavior of Riemann and Riemann with structure problems for a 2 × \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document}2 hyperbolic dissipative system. Suppl. Rend. Circ. Mat. Palermo, 2006, II(78): 201-225
[30.]
Müller I, Ruggeri T. . Rational Extended Thermodynamics, 1998 New York Springer
[31.]
Pavić-Čolić M. Multi-velocity and multi-temperature model of the mixture of polyatomic gases issuing from kinetic theory. Phys. Lett. A, 2019, 383(24): 2829-2835
[32.]
Pirner M. A review on BGK models for gas mixtures of mono and polyatomic molecules. Fluids, 2021, 6: 393
[33.]
Ruggeri T. Breakdown of shock-wave-structure solutions. Phys. Rev. E, 1993, 47: 4135-4140
[34.]
Ruggeri T, Serre D. Stability of constant equilibrium state for dissipative balance laws system with a convex entropy. Quart. Appl. Math., 2004, 62: 163-179
[35.]
Ruggeri T, Simić S. On the hyperbolic system of a mixture of Eulerian fluids: a comparison between single- and multi-temperature models. Math. Methods Appl. Sci., 2007, 30(7): 827-849
[36.]
Ruggeri, T., Simić, S.: Mixture of gases with multi-temperature: identification of a macroscopic average temperature. In: Memorie dell’Accademia delle Scienze, Lettere ed Arti di Napoli, Proceedings Mathematical Physics Models and Engineering Sciences, pp. 455–465 (2008). http://www.societanazionalescienzeletterearti.it/pdf/Memorie%20SFM%20-%20Mathematical%20Physics%20Model%20(2008).pdf
[37.]
Ruggeri T, Simić S. Average temperature and Maxwellian iteration in multitemperature mixtures of fluids. Phys. Rev. E, 2009, 80
[38.]
Ruggeri T, Sugiyama M. . Rational Extended Thermodynamics Beyond the Monatomic Gas, 2015 Cham Springer
[39.]
Ruggeri T, Sugiyama M. . Classical and Relativistic Rational Extended Thermodynamics of Gases, 2021 Cham Springer
[40.]
Ruggeri T, Taniguchi S. Berezovski A, Soomere T. Shock waves in hyperbolic systems of nonequilibrium thermodynamics. Applied Wave Mathematics II. Mathematics of Planet Earth, 2019 Cham Springer 167-186
[41.]
Ruggeri T, Taniguchi S. Sub-shock formation in shock structure of a binary mixture of polyatomic gases. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur., 2021, 32: 167-179
[42.]
Ruggeri T, Taniguchi S. A complete classification of sub-shocks in the shock structure of a binary mixture of Eulerian gases with different degrees of freedom. Phys. Fluids, 2022, 34(6)
[43.]
Ruggeri T, Taniguchi S. Shock structure and sub-shocks formation in a mixture of polyatomic gases with large bulk viscosity. Ric. Mat., 2023,
CrossRef Google scholar
[44.]
Taniguchi S, Ruggeri T. On the sub-shock formation in extended thermodynamics. Int. J. Non-Linear Mech., 2018, 99: 69-78
[45.]
Taniguchi S, Arima T, Ruggeri T, Sugiyama M. Thermodynamic theory of the shock wave structure in a rarefied polyatomic gas: beyond the Bethe-Teller theory. Phys. Rev. E, 2014, 89
[46.]
Taniguchi S, Arima T, Ruggeri T, Sugiyama M. Effect of the dynamic pressure on the shock wave structure in a rarefied polyatomic gas. Phys. Fluids, 2014, 26(1)
[47.]
Taniguchi S, Arima T, Ruggeri T, Sugiyama M. Overshoot of the non-equilibrium temperature in the shock wave structure of a rarefied polyatomic gas subject to the dynamic pressure. Int. J. Non-Linear Mech., 2016, 79: 66-75
[48.]
Taniguchi S, Ruggeri T. A 2 × \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 2 simple model in which the sub-shock exists when the shock velocity is slower than the maximum characteristic velocity. Ric. Mat., 2019, 68(1): 119-129
[49.]
Vincenti WG, Kruger CH Jr. . Introduction to Physical Gas Dynamics, 1965 New York, London, Sydney Wiley
[50.]
Weiss W. Continuous shock structure in extended thermodynamics. Phys. Rev. E, 1995, 52: 5760-5763
[51.]
Yong W-A. Entropy and global existence for hyperbolic balance laws. Arch. Ration. Mech. Anal., 2004, 172: 247-266
[52.]
Zel’dovich YB, Raizer YP. . Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, 2002 Mineola, New York Dover Publications
Funding
Japan Society for the Promotion of Science London(JP19K04204); Alma Mater Studiorum - Università di Bologna

Accesses

Citations

Detail

Sections
Recommended

/