Data-Driven Modeling of Partially Observed Biological Systems

Wei-Hung Su, Ching-Shan Chou, Dongbin Xiu

Communications on Applied Mathematics and Computation ›› 2024, Vol. 6 ›› Issue (1) : 739-754. DOI: 10.1007/s42967-023-00317-2
Original Paper

Data-Driven Modeling of Partially Observed Biological Systems

Author information +
History +

Abstract

We present a numerical approach for modeling unknown dynamical systems using partially observed data, with a focus on biological systems with (relatively) complex dynamical behavior. As an extension of the recently developed deep neural network (DNN) learning methods, our approach is particularly suitable for practical situations when (i) measurement data are available for only a subset of the state variables, and (ii) the system parameters cannot be observed or measured at all. We demonstrate that, with a properly designed DNN structure with memory terms, effective DNN models can be learned from such partially observed data containing hidden parameters. The learned DNN model serves as an accurate predictive tool for system analysis. Through a few representative biological problems, we demonstrate that such DNN models can capture qualitative dynamical behavior changes in the system, such as bifurcations, even when the parameters controlling such behavior changes are completely unknown throughout not only the model learning process but also the system prediction process. The learned DNN model effectively creates a “closed” model involving only the observables when such a closed-form model does not exist mathematically.

Keywords

Deep neural network (DNN) / Governing equation discovery / Biological system / Partial observation

Cite this article

Download citation ▾
Wei-Hung Su, Ching-Shan Chou, Dongbin Xiu. Data-Driven Modeling of Partially Observed Biological Systems. Communications on Applied Mathematics and Computation, 2024, 6(1): 739‒754 https://doi.org/10.1007/s42967-023-00317-2

References

[1.]
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/. Software available from tensorflow.org
[2.]
Bongard J, Lipson H. Automated reverse engineering of nonlinear dynamical systems. Proc. Natl. Acad. Sci. USA, 2007, 104: 9943-9948,
CrossRef Google scholar
[3.]
Chan S, Elsheikh A. A machine learning approach for efficient uncertainty quantification using multiscale methods. J. Comput. Phys., 2018, 354: 494-511,
CrossRef Google scholar
[4.]
Chen Z, Churchill V, Wu K, Xiu D. Deep neural network modeling of unknown partial differential equations in nodal space. J. Comput. Phys., 2022, 449,
CrossRef Google scholar
[5.]
Chen Z, Xiu D. On generalized residual network for deep learning of unknown dynamical systems. J. Comput. Phys., 2021, 438,
CrossRef Google scholar
[6.]
Daniels, B.C., Nemenman, I.: Automated adaptive inference of phenomenological dynamical models. Nature Communications 6, 8133 (2015)
[7.]
Daniels BC, Nemenman I. Efficient inference of parsimonious phenomenological models of cellular dynamics using S-systems and alternating regression. PloS One, 2015, 10,
CrossRef Google scholar
[8.]
DeAngelis, D.L., Yurek, S.: Equation-free modeling unravels the behavior of complex ecological systems. Proc. Natl. Acad. Sci. USA 112, 3856–3857 (2015).
[9.]
E W, Engquist B, Huang Z. Heterogeneous multiscale method: a general methodology for multiscale modeling. Phys. Rev. B, 2003, 67: 092101,
CrossRef Google scholar
[10.]
Fall C, Marland E, Wagner J, Tyson J. . Computational Cell Biology, 2010 Berlin Springer Science+Business Media, Inc.
[11.]
Fu X, Chang L-B, Xiu D. Learning reduced systems via deep neural networks with memory. J. Mach. Learn. Model. Comput., 2020, 1: 97-118,
CrossRef Google scholar
[12.]
Fu, X., Mao, W., Chang, L.-B., Xiu, D.: Modeling unknown dynamical systems with hidden parameters. J. Mach. Learn. Model. Comput. 3, 79-95 (2022)
[13.]
Giannakis D, Majda AJ. Nonlinear Laplacian spectral analysis for time series with intermittency and low-frequency variability. Proc. Natl. Acad. Sci. USA, 2012, 109: 2222-2227,
CrossRef Google scholar
[14.]
Gonzalez-Garcia R, Rico-Martinez R, Kevrekidis IG. Identification of distributed parameter systems: a neural net based approach. Comput. Chem. Eng., 1998, 22: S965-S968,
CrossRef Google scholar
[15.]
Grimm, V., Railsback, S.F.: Individual-Based Modeling and Ecology. Princeton University Press, Princeton (2005)
[16.]
Han J, Jentzen A, E WN. Solving high-dimensional partial differential equations using deep learning. Proc. Natl. Acad. Sci., 2018, 115: 8505-8510,
CrossRef Google scholar
[17.]
Hau, D.T., Coiera, E.W.: Learning qualitative models from physiological signals internal accession date only. Technical report (1995)
[18.]
Hesthaven J, Ubbiali S. Non-intrusive reduced order modeling of nonlinear problems using neural networks. J. Comput. Phys., 2018, 363: 55-78,
CrossRef Google scholar
[19.]
Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 117, 500–544 (1952).
[20.]
Karumuri, S., Tripathy, R., Bilionis, I., Panchal, J.: Simulator-free solution of high-dimensional stochastic elliptic partial differential equations using deep neural networks, J. Comp. Phys. 404, 109120 (2019)
[21.]
Kevrekidis IG, Gear CW, Hyman JM, Kevrekidid PG, Runborg O, Theodoropoulos C. Equation-free, coarse-grained multiscale computation: enabling mocroscopic simulators to perform system-level analysis. Commun. Math. Sci., 2003, 1: 715-762,
CrossRef Google scholar
[22.]
Khoo, Y., Lu, J., Ying, L.: Solving parametric PDE problems with artificial neural networks. Euro.Jnl. Appl. Math. 32, 21–435 (2018). arXiv:1707.03351
[23.]
Long, Z., Lu, Y., Dong, B.: PDE-Net 2.0: learning PDEs from data with a numeric-symbolic hybrid deep network. J. Comput. Phys. 399, 108925 (2019). arXiv:1812.04426 [math.ST]
[24.]
Long, Z., Lu, Y., Ma, X., Dong, B.: PDE-net: learning PDEs from data. Proceedings of the 35th International Conference on Machine Learning. PMLR 80, 3208–3216 (2018)
[25.]
Maki LW, Keizer J. Mathematical analysis of a proposed mechanism for oscillatory insulin secretion in perifused hit-15 cells. Bull. Math. Biol., 1995, 57: 569-591,
CrossRef Google scholar
[26.]
Mangan NM, Brunton SL, Proctor JL, Kutz JN. Inferring biological networks by sparse identification of nonlinear dynamics. IEEE Trans. Mol. Biol. Multi-Scale Commun., 2016, 2: 52-63,
CrossRef Google scholar
[27.]
Mardt A, Pasquali L, Wu H, Noe F. VAMPnets for deep learning of molecular kinetics. Nat. Commun., 2018, 9: 5,
CrossRef Google scholar
[28.]
Mori H. Transport, collective motion, and Brownian motion. Prog. Theor. Phys., 1965, 33: 423-455,
CrossRef Google scholar
[29.]
Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber (1981). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1327511/
[30.]
Pawar S, Rahman SM, Vaddireddy H, San O, Rasheed A, Vedula P. A deep learning enabler for nonintrusive reduced order modeling of fluid flows. Phys. Fluids, 2019, 31,
CrossRef Google scholar
[31.]
Perretti CT, Munch SB, Sugihara G. Model-free forecasting outperforms the correct mechanistic model for simulated and experimental data. Proc. Natl. Acad. Sci. USA, 2013, 110: 5253-5257,
CrossRef Google scholar
[32.]
Qin T, Chen Z, Jakeman J, Xiu D. Data-driven learning of non-autonomous systems. SIAM J. Sci. Comput., 2021, 43: A1607-A1624,
CrossRef Google scholar
[33.]
Qin T, Chen Z, Jakeman J, Xiu D. Deep learning of parameterized equations with applications to uncertainty quantification. Int. J. Uncertain. Quantif., 2021, 11: 63-82,
CrossRef Google scholar
[34.]
Qin T, Wu K, Xiu D. Data driven governing equations approximation using deep neural networks. J. Comput. Phys., 2019, 395: 620-635,
CrossRef Google scholar
[35.]
Raissi M. Deep hidden physics models: deep learning of nonlinear partial differential equations. J. Mach. Learn. Res., 2018, 19: 1-24
[36.]
Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics informed deep learning (part I): data-driven solutions of nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019). arXiv:1711.10561
[37.]
Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics informed deep learning (part II): data-driven discovery of nonlinear partial differential equations (2017). arXiv:1711.10566
[38.]
Raissi, M., Perdikaris, P., Karniadakis, G.E.: Multistep neural networks for data-driven discovery of nonlinear dynamical systems (2018). arXiv:1801.01236
[39.]
Ray D, Hesthaven J. An artificial neural network as a troubled-cell indicator. J. Comput. Phys., 2018, 367: 166-191,
CrossRef Google scholar
[40.]
Rinzel J, Ermentrout G. Koch C, Segev I. Analysis of neural excitability and oscillations. Methods in Neuronal Modeling, 1998 2 Cambridge MIT Press 251-291
[41.]
Rudy SH, Kutz JN, Brunton SL. Deep learning of dynamics and signal-noise decomposition with time-stepping constraints. J. Comput. Phys., 2019, 396: 483-506,
CrossRef Google scholar
[42.]
Schmidt MD, Lipson H. Distilling free-form natural laws from experimental data. Science, 2009, 324: 81-85,
CrossRef Google scholar
[43.]
Schmidt MD, Vallabhajosyula RR, Jenkins JW, Hood JE, Soni AS, Wikswo JP, Lipson H. Automated refinement and inference of analytical models for metabolic networks. Phys. Biol., 2011, 8,
CrossRef Google scholar
[44.]
Sugihara G, May R, Ye H, Hsieh C, Deyle E, Fogarty M, Munch S. Detecting causality in complex ecosystems. Science, 2012, 338: 496-500,
CrossRef Google scholar
[45.]
Sun, Y., Zhang, L., Schaeffer, H.: NeuPDE: neural network based ordinary and partial differential equations for modeling time-dependent data. Proc. Machine Learning Res. 107, 352–372 (2020). arXiv:1908.03190
[46.]
Tripathy R, Bilionis I. Deep UQ: learning deep neural network surrogate model for high dimensional uncertainty quantification. J. Comput. Phys., 2018, 375: 565-588,
CrossRef Google scholar
[47.]
Tsumoto K, Kitajima H, Yoshinaga T, Aihara K, Kawakami H. Bifurcations in Morris–Lecar neuron model. Neurocomputing, 2006, 69: 293-316,
CrossRef Google scholar
[48.]
Voss HU, Kolodner P, Abel M, Kurths J. Amplitude equations from spatiotemporal binary-fluid convection data. Phys. Rev. Lett., 1999, 83: 3422,
CrossRef Google scholar
[49.]
Wang Q, Ripamonti N, Hesthaven J. Recurrent neural network closure of parametric POD-Galerkin reduced-order models based on the Mori-Zwanzig formalism. J. Comput. Phys., 2020, 410,
CrossRef Google scholar
[50.]
Wang, Y., Shen, Z., Long, Z., Dong, B.: Learning to discretize: solving 1D scalar conservation laws via deep reinforcement learning. Commun. Comput. Phys. 28, 2158–2179 (2020). arXiv:1905.11079
[51.]
Wood SN, Thomas MB. Super-sensitivity to structure in biological models. Proc. R. Soc. B: Biol. Sci., 1999, 266: 565-570,
CrossRef Google scholar
[52.]
Wu K, Xiu D. Data-driven deep learning of partial differential equations in modal space. J. Comput. Phys., 2020, 408,
CrossRef Google scholar
[53.]
Ye H, Beamish RJ, Glaser SM, Grant SCH, Hsieh C, Richards LJ, Schnute JT, Sugihara G. Equation-free mechanistic ecosystem forecasting using empirical dynamic modeling. Proc. Natl. Acad. Sci. USA, 2015, 112: E1569-E1576,
CrossRef Google scholar
[54.]
Yodzis, P.: The indeterminacy of ecological interactions as perceived through perturbation. Technical Report (1988)
[55.]
Zhu Y, Zabaras N. Bayesian deep convolutional encoder-decoder networks for surrogate modeling and uncertainty quantification. J. Comput. Phys., 2018, 366: 415-447,
CrossRef Google scholar
[56.]
Zwanzig R. Nonlinear generalized Langevin equations. J. Stat. Phys., 1973, 9: 215-220,
CrossRef Google scholar
Funding
National Science Foundation (US)(DMS 1813071); Air Force Office of Scientific Research(FA9550-22-1-0011)

Accesses

Citations

Detail

Sections
Recommended

/