High-Order ADER Discontinuous Galerkin Schemes for a Symmetric Hyperbolic Model of Compressible Barotropic Two-Fluid Flows

Laura Río-Martín, Michael Dumbser

Communications on Applied Mathematics and Computation ›› 2023, Vol. 6 ›› Issue (4) : 2119-2154. DOI: 10.1007/s42967-023-00313-6
Original Paper

High-Order ADER Discontinuous Galerkin Schemes for a Symmetric Hyperbolic Model of Compressible Barotropic Two-Fluid Flows

Author information +
History +

Abstract

This paper presents a high-order discontinuous Galerkin (DG) finite-element method to solve the barotropic version of the conservative symmetric hyperbolic and thermodynamically compatible (SHTC) model of compressible two-phase flow, introduced by Romenski et al. in [59, 62], in multiple space dimensions. In the absence of algebraic source terms, the model is endowed with a curl constraint on the relative velocity field. In this paper, the hyperbolicity of the system is studied for the first time in the multidimensional case, showing that the original model is only weakly hyperbolic in multiple space dimensions. To restore the strong hyperbolicity, two different methodologies are used: (i) the explicit symmetrization of the system, which can be achieved by adding terms that contain linear combinations of the curl involution, similar to the Godunov-Powell terms in the MHD equations; (ii) the use of the hyperbolic generalized Lagrangian multiplier (GLM) curl-cleaning approach forwarded. The PDE system is solved using a high-order ADER-DG method with a posteriori subcell finite-volume limiter to deal with shock waves and the steep gradients in the volume fraction commonly appearing in the solutions of this type of model. To illustrate the performance of the method, several different test cases and benchmark problems have been run, showing the high order of the scheme and the good agreement when compared to reference solutions computed with other well-known methods.

Keywords

Compressible two-fluid flows / Symmetric hyperbolic and thermodynamically compatible (SHTC) systems / Hyperbolic systems with curl involutions / High-order ADER discontinuous Galerkin (DG) schemes with subcell finite-volume limiter / Conservative form of hyperbolic models

Cite this article

Download citation ▾
Laura Río-Martín, Michael Dumbser. High-Order ADER Discontinuous Galerkin Schemes for a Symmetric Hyperbolic Model of Compressible Barotropic Two-Fluid Flows. Communications on Applied Mathematics and Computation, 2023, 6(4): 2119‒2154 https://doi.org/10.1007/s42967-023-00313-6

References

[1.]
Abgrall R, Saurel R. Discrete equations for physical and numerical compressible multiphase mixtures. J. Comput. Phys., 2003, 186(2): 361-396
[2.]
Anderson DM, McFadden GB, Wheeler AA. Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech., 1998, 30(1): 139-165
[3.]
Andrianov N, Warnecke G. The Riemann problem for the Baer-Nunziato two-phase flow model. J. Comput. Phys., 2004, 195(2): 434-464
[4.]
Baer MR, Nunziato JW. A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. Int. J. Multiph. Flow, 1986, 12(6): 861-889
[5.]
Balsara DS. Second-order accurate schemes for magnetohydrodynamics with divergence-free reconstruction. Astrophys. J. Suppl. Ser., 2004, 151(1): 149
[6.]
Balsara D, Käppeli R, Boscheri W, Dumbser M. Curl constraint-preserving reconstruction and the guidance it gives for mimetic scheme design. Commun. Appl. Math. Comput. Sci., 2023, 5(1): 235-294
[7.]
Barton PT. An interface-capturing Godunov method for the simulation of compressible solid-fluid problems. J. Comput. Phys., 2019, 390: 25-50
[8.]
Bdzil JB, Menikoff R, Son SF, Kapila AK, Stewart DS. Two-phase modeling of deflagration-to-detonation transition in granular materials: a critical examination of modeling issues. Phys. Fluids, 1999, 11(2): 378-402
[9.]
Boscheri W, Dumbser M, Ioriatti M, Peshkov I, Romenski EI. A structure-preserving staggered semi-implicit finite volume scheme for continuum mechanics. J. Comput. Phys., 2021, 424: 2
[10.]
Busto S, Chiocchetti S, Dumbser M, Gaburro E, Peshkov I. High order ADER schemes for continuum mechanics. Front. Phys., 2020, 8: 32
[11.]
Busto S, Dumbser M, Escalante C, Gavrilyuk S, Favrie N. On high order ADER discontinuous Galerkin schemes for first order hyperbolic reformulations of nonlinear dispersive systems. J. Sci. Comput., 2021, 87: 25
[12.]
Busto S, Dumbser M, Río-Martín L. An Arbitrary–Lagrangian–Eulerian hybrid finite volume/finite element method on moving unstructured meshes for the Navier-Stokes equations. Appl. Math. Comput., 2023, 437: 25
[13.]
Castro MJ, Gallardo JM, Parés C. High-order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. Applications to shallow-water systems. Math. Comput., 2006, 75: 1103-1134
[14.]
Casulli V. A semi-implicit numerical method for the free-surface Navier–Stokes equations. Int. J. Numer. Meth. Fluids, 2014, 74: 605-622
[15.]
Chiocchetti S, Dumbser M. An exactly curl-free staggered semi-implicit finite volume scheme for a first order hyperbolic model of viscous two-phase flows with surface tension. J. Sci. Comput., 2023, 94: 2
[16.]
Chiocchetti S, Peshkov I, Gavrilyuk S, Dumbser M. High order ADER schemes and GLM curl cleaning for a first order hyperbolic formulation of compressible flow with surface tension. J. Comput. Phys., 2021, 426
[17.]
Clain S, Diot S, Loubère R. A high-order finite volume method for systems of conservation laws—multi-dimensional optimal order detection (MOOD). J. Comput. Phys., 2011, 230(10): 4028-4050
[18.]
De Lorenzo M, Pelanti M, Lafon P. HLLC-type and path-conservative schemes for a single-velocity six-equation two-phase flow model: A comparative study. Appl. Math. Comput., 2018, 333: 95-117
[19.]
Dedner A, Kemm F, Kröner D, Munz CD, Schnitzer T, Wesenberg M. Hyperbolic divergence cleaning for the MHD equations. J. Comput. Phys., 2002, 175(2): 645-673
[20.]
Dhaouadi F, Dumbser M. A first order hyperbolic reformulation of the Navier-Stokes-Korteweg system based on the GPR model and an augmented Lagrangian approach. J. Comput. Phys., 2022, 470: 2
[21.]
Dhaouadi F, Dumbser M. A structure-preserving finite volume scheme for a hyperbolic reformulation of the Navier-Stokes-Korteweg equations. Mathematics, 2023, 11: 2
[22.]
Diot S, Clain S, Loubère R. Improved detection criteria for the multi-dimensional optimal order detection (MOOD) on unstructured meshes with very high-order polynomials. Comput. Fluids, 2012, 64: 43-63
[23.]
Diot S, Loubère R, Clain S. The MOOD method in the three-dimensional case: Very high-order finite volume method for hyperbolic systems. Int. J. Numer. Methods Fluids, 2013, 73: 362-392
[24.]
Dumbser M. Arbitrary high order PNPM schemes on unstructured meshes for the compressible Navier–Stokes equations. Comput. Fluids, 2010, 39(1): 60-76
[25.]
Dumbser M. A simple two-phase method for the simulation of complex free surface flows. Comput. Methods Appl. Mech. Eng., 2011, 200(9): 1204-1219
[26.]
Dumbser M, Balsara DS. High-order unstructured one-step PNPM schemes for the viscous and resistive MHD equations. Comput. Model. Eng. Sci. (CMES), 2009, 54(3): 301-333
[27.]
Dumbser M, Balsara DS, Toro EF, Munz CD. A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes. J. Comput. Phys., 2008, 227(18): 8209-8253
[28.]
Dumbser M, Enaux C, Toro EF. Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws. J. Comput. Phys., 2008, 227(8): 3971-4001
[29.]
Dumbser M, Fambri F, Gaburro E, Reinarz A. On GLM curl cleaning for a first order reduction of the CCZ4 formulation of the Einstein field equations. J. Comput. Phys., 2020, 404
[30.]
Dumbser M, Hidalgo A, Castro M, Parés C, Toro EF. FORCE schemes on unstructured meshes II: Non-conservative hyperbolic systems. Comput. Methods Appl. Mech. Eng., 2010, 199: 625-647
[31.]
Dumbser M, Loubère R. A simple robust and accurate a posteriori sub-cell finite volume limiter for the discontinuous Galerkin method on unstructured meshes. J. Comput. Phys., 2016, 319: 163-199
[32.]
Dumbser M, Peshkov I, Romenski EI, Zanotti O. High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: Viscous heat-conducting fluids and elastic solids. J. Comput. Phys., 2016, 314: 824-862
[33.]
Dumbser M, Zanotti O. Very high order PNPM schemes on unstructured meshes for the resistive relativistic MHD equations. J. Comput. Phys., 2009, 228(18): 6991-7006
[34.]
Dumbser M, Zanotti O, Loubère R, Diot S. A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws. J. Comput. Phys., 2014, 278: 47-75
[35.]
Favrie N, Gavrilyuk SL. Diffuse interface model for compressible fluid-compressible elastic-plastic solid interaction. J. Comput. Phys., 2012, 231(7): 2695-2723
[36.]
Favrie N, Gavrilyuk SL, Saurel R. Solid-fluid diffuse interface model in cases of extreme deformations. J. Comput. Phys., 2009, 228(16): 6037-6077
[37.]
Ferrari D, Dumbser M. A mass and momentum-conservative semi-implicit finite volume scheme for complex nonhydrostatic free surface flows. Int. J. Numer. Meth. Fluids, 2021, 93: 2946-2967
[38.]
Ferrari, D., Dumbser, M.: A semi-implicit finite volume scheme for incompressible two-phase flows. Communications on Applied Mathematics and Computation (2023). Submitted
[39.]
Gaburro E, Castro MJ, Dumbser M. A well balanced diffuse interface method for complex nonhydrostatic free surface flows. Comput. Fluids, 2018, 175: 180-198
[40.]
Gassner G, Lörcher F, Munz CD. A contribution to the construction of diffusion fluxes for finite volume and discontinuous Galerkin schemes. J. Comput. Phys., 2007, 224(8): 1049-1063
[41.]
Gavrilyuk S, Saurel R. Mathematical and numerical modeling of two-phase compressible flows with micro-inertia. J. Comput. Phys., 2002, 175(1): 326-360
[42.]
Godunov SK. An interesting class of quasi-linear systems. Dokl. Akad. Nauk SSSR, 1961, 139(3): 521-523
[43.]
Godunov SK. Symmetric form of the magnetohydrodynamic equation. Numer. Methods Mech. Contin. Medium, 1972, 3(1): 26-34
[44.]
Godunov SK, Romenski EI. . Elements of continuum mechanics and conservation laws, 2003 Berlin Kluwer Academic/Plenum Publishers
[45.]
Isaacson E, Temple B. Nonlinear resonance in systems of conservation laws. SIAM J. Appl. Math., 1992, 52: 1260-1278
[46.]
Kapila AK, Menikoff R, Bdzil JB, Son SF, Stewart DS. Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations. Phys. Fluids, 2001, 13(10): 3002-3024
[47.]
Kemm F, Gaburro E, Thein F, Dumbser M. A simple diffuse interface approach for compressible flows around moving solids of arbitrary shape based on a reduced Baer-Nunziato model. Comput. Fluids, 2020, 204
[48.]
Lukáčová-Medvid’ová, M., Puppo, G., Thomann, A.: An all Mach number finite volume method for isentropic two-phase flow. J. Numer. Math. 31(3), 175–204 (2023)
[49.]
Munz CD, Omnes P, Schneider R, Sonnendrücker E, Voss U. Divergence correction techniques for Maxwell solvers based on a hyperbolic model. J. Comput. Phys., 2000, 161(2): 484-511
[50.]
Ndanou S, Favrie N, Gavrilyuk SL. Multi-solid and multi-fluid diffuse interface model: Applications to dynamic fracture and fragmentation. J. Comput. Phys., 2015, 295: 523-555
[51.]
Parés C. Numerical methods for nonconservative hyperbolic systems: a theoretical framework. SIAM J. Numer. Anal., 2006, 44: 300-321
[52.]
Powell, K.G.: An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension). Tech. Rep. ICASE-Report 94-24 (NASA CR-194902), NASA Langley Research Center, Hampton, VA (1994)
[53.]
Powell KG. . An approximate Riemann solver for magnetohydrodynamics, 1997 Berlin Springer 570-583
[54.]
Powell KG, Roe PL, Linde TJ, Gombosi TI, De Zeeuw DL. A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J. Comput. Phys., 1999, 154(2): 284-309
[55.]
Re B, Abgrall R. A pressure-based method for weakly compressible two-phase flows under a Baer-Nunziato type model with generic equations of state and pressure and velocity disequilibrium. Int. J. Numer. Methods Fluids, 2022, 94(8): 1183-1232
[56.]
Romenski EI. Hyperbolic systems of thermodynamically compatible conservation laws in continuum mechanics. Math. Comput. Model., 1998, 28(10): 115-130
[57.]
Romenski, E.I.: Thermodynamics and Hyperbolic Systems of Balance Laws in Continuum Mechanics, pp. 745–761. Springer US (2001)
[58.]
Romenski EI, Belozerov AA, Peshkov I. Conservative formulation for compressible multiphase flows. Q. Appl. Math., 2016, 74: 113-136
[59.]
Romenski EI, Drikakis D, Toro EF. Conservative models and numerical methods for compressible two-phase flow. J. Sci. Comput., 2010, 42: 68-95
[60.]
Romenski EI, Reshetova G, Peshkov I. Two-phase hyperbolic model for porous media saturated with a viscous fluid and its application to wavefields simulation. Appl. Math. Model., 2022, 106: 567-600
[61.]
Romenski EI, Reshetova G, Peshkov I, Dumbser M. Modeling wavefields in saturated elastic porous media based on thermodynamically compatible system theory for two-phase solid-fluid mixtures. Comput. Fluids, 2020, 206
[62.]
Romenski EI, Resnyansky AD, Toro EF. Conservative hyperbolic formulation for compressible two-phase flow with different phase pressures and temperatures. Q. Appl. Math., 2007, 65(2): 259-279
[63.]
Romenski EI, Toro EF. Compressible two-phase flows: Two-pressure models and numerical methods. Comput. Fluid Dyn. J., 2012, 13: 2
[64.]
Rusanov V. The calculation of the interaction of non-stationary shock waves and obstacles. USSR Comput. Math. Math. Phys., 1962, 1(2): 304-320
[65.]
Saurel R, Abgrall R. A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys., 1999, 150(2): 425-467
[66.]
Scannapieco AJ, Cheng B. A multifluid interpenetration mix model. Phys. Lett. A, 2002, 299(1): 49-64
[67.]
Schmidmayer K, Petitpas F, Daniel E, Favrie N, Gavrilyuk S. A model and numerical method for compressible flows with capillary effects. J. Comput. Phys., 2017, 334: 468-496
[68.]
Tavelli M, Dumbser M. Arbitrary high order accurate space-time discontinuous Galerkin finite element schemes on staggered unstructured meshes for linear elasticity. J. Comput. Phys., 2018, 366: 386-414
[69.]
Thein F, Romenski EI, Dumbser M. Exact and numerical solutions of the Riemann problem for a conservative model of compressible two-phase flows. J. Sci. Comput., 2022, 93: 83
[70.]
Titarev VA, Toro EF. ADER schemes for three-dimensional nonlinear hyperbolic systems. J. Comput. Phys., 2005, 204(2): 715-736
[71.]
Toro EF. . Riemann solvers and numerical methods for fluid dynamics, 2009 Berlin Springer
[72.]
Toro, E.F., Millington, R., Nejad, L.: Towards very high order Godunov schemes. In: Godunov Methods, Theory and Applications. Springer (2001)
[73.]
Toro EF, Titarev VA. Solution of the generalized Riemann problem for advection-reaction equations. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci., 2002, 458(2018): 271-281
[74.]
Toro EF, Titarev VA. Derivative Riemann solvers for systems of conservation laws and ADER methods. J. Comput. Phys., 2006, 212(1): 150-165
[75.]
van der Waals JD. The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density. J. Stat. Phys., 1979, 20(2): 200-244
[76.]
Zanotti O, Fambri F, Dumbser M, Hidalgo A. Space-time adaptive ADER discontinuous Galerkin finite element schemes with a posteriori sub-cell finite volume limiting. Comput. Fluids, 2015, 118: 204-224
Funding
Ministero dell’Istruzione, dell’Universitá e della Ricerca(PRIN 2022); Ministerio de Ciencia, Innovación y Universidades(RSU.UDC.MS15); Università degli Studi di Trento

Accesses

Citations

Detail

Sections
Recommended

/