Approximation Properties of Vectorial Exponential Functions

Christophe Buet, Bruno Despres, Guillaume Morel

Communications on Applied Mathematics and Computation ›› 2023, Vol. 6 ›› Issue (3) : 1801-1831. DOI: 10.1007/s42967-023-00310-9
Original Paper

Approximation Properties of Vectorial Exponential Functions

Author information +
History +

Abstract

This contribution is dedicated to the celebration of Rémi Abgrall’s accomplishments in Applied Mathematics and Scientific Computing during the conference “Essentially Hyperbolic Problems: Unconventional Numerics, and Applications”. With respect to classical Finite Elements Methods, Trefftz methods are unconventional methods because of the way the basis functions are generated. Trefftz discontinuous Galerkin (TDG) methods have recently shown potential for numerical approximation of transport equations [6, 26] with vectorial exponential modes. This paper focuses on a proof of the approximation properties of these exponential solutions. We show that vectorial exponential functions can achieve high order convergence. The fundamental part of the proof consists in proving that a certain rectangular matrix has maximal rank.

Keywords

Trefftz method / Transport equation / Vectorial exponential functions

Cite this article

Download citation ▾
Christophe Buet, Bruno Despres, Guillaume Morel. Approximation Properties of Vectorial Exponential Functions. Communications on Applied Mathematics and Computation, 2023, 6(3): 1801‒1831 https://doi.org/10.1007/s42967-023-00310-9

References

[1.]
Avvakumov, A.V., Strizhov, V.F., Vabishchevich, P.N., Vasilev, A.O.: Numerical modeling of neutron transport in SP 3 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{SP}_3$$\end{document} approximation by finite element method. arXiv:1903.11502v1 (2019)
[2.]
Azmy Y, Sartori E. . Nuclear Computational Science: a Century in Review, 2010 Berlin Springer,
CrossRef Google scholar
[3.]
Bell G, Glasstone S. . Nuclear Reactor Theory, 1970 New York Van Nostrand Reinhold Company
[4.]
Brenner SC, Scott L. . The Mathematical Theory of Finite Element Methods, 2008 3 New York Springer,
CrossRef Google scholar
[5.]
Buet, C., Després, B., Morel, G.: Discretization of the PN \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{PN}$$\end{document} model for 2D transport of particles with a Trefftz discontinuous Galerkin method (2019). https://hal.sorbonne-universite.fr/hal-02372279/document
[6.]
Buet C, Despres B, Morel G. Trefftz discontinuous Galerkin basis functions for a class of Friedrichs systems coming from linear transport. ACOM, 2020, 4: 1-27
[7.]
Buffa A, Monk P. Error estimates for the Ultra Weak Variational Formulation of the Helmholtz equation. ESAIM Math. Model. Numer. Anal., 2008, 42: 925-940,
CrossRef Google scholar
[8.]
Cessenat O, Després B. Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz problem. SIAM J. Numer. Anal., 1998, 35: 255-299,
CrossRef Google scholar
[9.]
Cessenat O, Després B. Using plane waves as base functions for solving time harmonic equations with the ultra weak variational formulation. Medium Freq. Acoust., 2003, 11: 227-238
[10.]
Crockatt MM, Christlieb AJ, Garrett CK, Hauck CD. Hybrid methods for radiation transport using diagonally implicit Runge-Kutta and space-time discontinuous Galerkin time integration. J. Comput. Phys., 2019, 376: 455-477,
CrossRef Google scholar
[11.]
Després B, El Ghaoui M, Sayah T. A Trefftz method with reconstruction of the normal derivative applied to elliptic equations. Math. Comp., 2022, 91: 2645-2679
[12.]
Gittelson CJ, Hiptmair R, Perugia I. Plane wave discontinuous Galerkin methods: analysis of the h \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h$$\end{document}-version. ESAIM Math. Model. Numer. Anal., 2009, 43: 297-331,
CrossRef Google scholar
[13.]
Heningburg V, Hauck CD. A hybrid finite-volume, discontinuous Galerkin discretization for the radiative transport equation. Multiscale Model. Simul., 2021, 19: 1-24,
CrossRef Google scholar
[14.]
Hermeline F. A discretization of the multigroup P N \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_N$$\end{document} radiative transfer equation on general meshes. J. Comput. Phys., 2016, 313: 549-582,
CrossRef Google scholar
[15.]
Hiptmair R, Moiola A, Perugia I. Plane wave discontinuous Galerkin methods for the 2D Helmholtz equation: analysis of the p \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-version. SIAM J. Numer. Anal., 2011, 49: 264-284,
CrossRef Google scholar
[16.]
Hiptmair R, Moiola A, Perugia I. Plane wave discontinuous Galerkin methods: exponential convergence of the hp \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$hp$$\end{document}-version. Found. Comput. Math., 2016, 16: 637-675,
CrossRef Google scholar
[17.]
Huttunen T, Monk P, Kaipio JP. Computational aspects of the ultra-weak variational formulation. J. Comput. Phys., 2002, 182: 27-46,
CrossRef Google scholar
[18.]
Imbert-Gérard L-M. Interpolation properties of generalized plane waves. Numer. Math., 2015, 131: 683-711,
CrossRef Google scholar
[19.]
Imbert-Gerard L-M. Amplitude-based generalized plane waves: new quasi-Trefftz functions for scalar equations in two dimensions. SIAM J. Numer. Anal., 2021, 59: 1663-1686,
CrossRef Google scholar
[20.]
Imbert-Gérard L-M, Després B. A generalized plane-wave numerical method for smooth nonconstant coefficients. IMA J. Numer. Anal., 2014, 34: 1072-1103,
CrossRef Google scholar
[21.]
Lehrenfeld, C., Stocker, P.: Embedded Trefftz discontinuous Galerkin methods (2022). arXiv:2201.07041
[22.]
McClarren RG. Theoretical aspects of the simplified pn equations. Transp. Theory Stat. Phys., 2010, 39: 73-109,
CrossRef Google scholar
[23.]
Mihalas D, Mihalas BW. . Foundations of Radiation Hydrodynamics, 1984 New York Oxford University Press
[24.]
Moiola A, Hiptmair R, Perugia I. Plane wave approximation of homogeneous Helmholtz solutions. Z. Angew. Math. Phys., 2011, 62: 809-837,
CrossRef Google scholar
[25.]
Morel, G.: Asymptotic-preserving and well-balanced schemes for transport models using Trefftz discontinuous Galerkin method, theses, Sorbonne Université (2018). https://hal.archives-ouvertes.fr/tel-01911872
[26.]
Morel G, Buet C, Després B. Trefftz discontinuous Galerkin method for Friedrichs systems with linear relaxation: application to the P 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_1$$\end{document} model. Comput. Methods Appl. Math., 2018, 18: 521-557,
CrossRef Google scholar
[27.]
Pomraning GC. . The Equations of Radiation Hydrodynamics, International Series of Monographs in Natural Philosophy, 1973 Oxford Pergamon Press
[28.]
Zienkiewicz, O.: Origins, milestones and directions of the finite element method—A personal view. Archives of Computational Methods in Engineering 2, 1–48 (1995)

Accesses

Citations

Detail

Sections
Recommended

/