Approximation Properties of Vectorial Exponential Functions
Christophe Buet, Bruno Despres, Guillaume Morel
Approximation Properties of Vectorial Exponential Functions
This contribution is dedicated to the celebration of Rémi Abgrall’s accomplishments in Applied Mathematics and Scientific Computing during the conference “Essentially Hyperbolic Problems: Unconventional Numerics, and Applications”. With respect to classical Finite Elements Methods, Trefftz methods are unconventional methods because of the way the basis functions are generated. Trefftz discontinuous Galerkin (TDG) methods have recently shown potential for numerical approximation of transport equations [
Trefftz method / Transport equation / Vectorial exponential functions
[1.] |
Avvakumov, A.V., Strizhov, V.F., Vabishchevich, P.N., Vasilev, A.O.: Numerical modeling of neutron transport in SP 3 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{SP}_3$$\end{document} approximation by finite element method. arXiv:1903.11502v1 (2019)
|
[2.] |
|
[3.] |
|
[4.] |
|
[5.] |
Buet, C., Després, B., Morel, G.: Discretization of the PN \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{PN}$$\end{document} model for 2D transport of particles with a Trefftz discontinuous Galerkin method (2019). https://hal.sorbonne-universite.fr/hal-02372279/document
|
[6.] |
|
[7.] |
|
[8.] |
|
[9.] |
|
[10.] |
|
[11.] |
|
[12.] |
|
[13.] |
|
[14.] |
|
[15.] |
|
[16.] |
|
[17.] |
|
[18.] |
|
[19.] |
|
[20.] |
|
[21.] |
Lehrenfeld, C., Stocker, P.: Embedded Trefftz discontinuous Galerkin methods (2022). arXiv:2201.07041
|
[22.] |
|
[23.] |
|
[24.] |
|
[25.] |
Morel, G.: Asymptotic-preserving and well-balanced schemes for transport models using Trefftz discontinuous Galerkin method, theses, Sorbonne Université (2018). https://hal.archives-ouvertes.fr/tel-01911872
|
[26.] |
|
[27.] |
|
[28.] |
Zienkiewicz, O.: Origins, milestones and directions of the finite element method—A personal view. Archives of Computational Methods in Engineering 2, 1–48 (1995)
|
/
〈 | 〉 |