An Unconventional Divergence Preserving Finite-Volume Discretization of Lagrangian Ideal MHD

Walter Boscheri, Raphaël Loubère, Pierre-Henri Maire

Communications on Applied Mathematics and Computation ›› 2023, Vol. 6 ›› Issue (3) : 1665-1719. DOI: 10.1007/s42967-023-00309-2
Original Paper

An Unconventional Divergence Preserving Finite-Volume Discretization of Lagrangian Ideal MHD

Author information +
History +

Abstract

We construct an unconventional divergence preserving discretization of updated Lagrangian ideal magnetohydrodynamics (MHD) over simplicial grids. The cell-centered finite-volume (FV) method employed to discretize the conservation laws of volume, momentum, and total energy is rigorously the same as the one developed to simulate hyperelasticity equations. By construction this moving mesh method ensures the compatibility between the mesh displacement and the approximation of the volume flux by means of the nodal velocity and the attached unit corner normal vector which is nothing but the partial derivative of the cell volume with respect to the node coordinate under consideration. This is precisely the definition of the compatibility with the Geometrical Conservation Law which is the cornerstone of any proper multi-dimensional moving mesh FV discretization. The momentum and the total energy fluxes are approximated utilizing the partition of cell faces into sub-faces and the concept of sub-face force which is the traction force attached to each sub-face impinging at a node. We observe that the time evolution of the magnetic field might be simply expressed in terms of the deformation gradient which characterizes the Lagrange-to-Euler mapping. In this framework, the divergence of the magnetic field is conserved with respect to time thanks to the Piola formula. Therefore, we solve the fully compatible updated Lagrangian discretization of the deformation gradient tensor for updating in a simple manner the cell-centered value of the magnetic field. Finally, the sub-face traction force is expressed in terms of the nodal velocity to ensure a semi-discrete entropy inequality within each cell. The conservation of momentum and total energy is recovered prescribing the balance of all the sub-face forces attached to the sub-faces impinging at a given node. This balance corresponds to a vectorial system satisfied by the nodal velocity. It always admits a unique solution which provides the nodal velocity. The robustness and the accuracy of this unconventional FV scheme have been demonstrated by employing various representative test cases. Finally, it is worth emphasizing that once you have an updated Lagrangian code for solving hyperelasticity you also get an almost free updated Lagrangian code for solving ideal MHD ensuring exactly the compatibility with the involution constraint for the magnetic field at the discrete level.

Keywords

Cell-centered Lagrangian finite-volume (FV) schemes / Hyper-elasticity / Ideal magnetohydrodynamics (MHD) equations / Moving unstructured meshes / A posteriori MOOD limiting

Cite this article

Download citation ▾
Walter Boscheri, Raphaël Loubère, Pierre-Henri Maire. An Unconventional Divergence Preserving Finite-Volume Discretization of Lagrangian Ideal MHD. Communications on Applied Mathematics and Computation, 2023, 6(3): 1665‒1719 https://doi.org/10.1007/s42967-023-00309-2

References

[1.]
Balsara DS. Second-order accurate schemes for magnetohydrodynamics with divergence-free reconstruction. Astrophys. J. Suppl. Ser., 2004, 151: 149-184
[2.]
Balsara DS. Multidimensional HLLE Riemann solver: application to Euler and magnetohydrodynamic flows. J. Comput. Phys., 2010, 229: 1970-1993
[3.]
Balsara DS. Self-adjusting, positivity preserving high order schemes for hydrodynamics and magnetohydrodynamics. J. Comput. Phys., 2011, 231: 7504-7517
[4.]
Balsara DS. A two-dimensional HLLC Riemann solver for conservation laws: application to Euler and magnetohydrodynamic flows. J. Comput. Phys., 2012, 231: 7476-7503
[5.]
Balsara DS. Multidimensional Riemann problem with self-similar internal structure. Part I–application to hyperbolic conservation laws on structured meshes. J. Comput. Phys., 2014, 277: 163-200
[6.]
Balsara DS, Spicer D. A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations. J. Comput. Phys., 1999, 149: 270-292
[7.]
Barlow AJ, Maire P-H, Rider WJ, Rieben RN, Shashkov MJ. Arbitrary Lagrangian-Eulerian methods for modeling high-speed compressible multimaterial flows. J. Comput. Phys., 2016, 322: 603-665
[8.]
Barth, T.: On the role of involutions in the discontinuous Galerkin discretization of Maxwell and magnetohydrodynamic systems. In: Arnold, D.N., Bochev, P.B., Lehoucq, R.B., Nicolaides, R.A., Shashkov, M. (eds.) Compatible Spatial Discretizations, pp. 69–88. Springer, New York, NY (2006)
[9.]
Barth T, Jespersen D. The design and application of upwind schemes on unstructured meshes. AIAA Paper, 1989, 89–0366: 1-12
[10.]
Bauer AL, Burton DE, Caramana EJ, Loubère R, Shashkov MJ, Whalen PP. The internal consistency, stability, and accuracy of the discrete, compatible formulation of Lagrangian hydrodynamics. J. Comput. Phys., 2006, 218(2): 572-593
[11.]
Boscheri W, Dumbser M. Arbitrary-Lagrangian-Eulerian one-step WENO finite volume schemes on unstructured triangular meshes. Commun. Comput. Phys., 2013, 14: 1174-1206
[12.]
Boscheri W, Dumbser M. A direct Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and non-conservative hyperbolic systems in 3D. J. Comput. Phys., 2014, 275: 484-523
[13.]
Boscheri W, Dumbser M, Loubère R, Maire P-H. A second-order cell-centered Lagrangian ADER-MOOD finite volume scheme on multidimensional unstructured meshes for hydrodynamics. J. Comput. Phys., 2018, 358: 103-129
[14.]
Boscheri W, Loubère R, Dumbser M. Direct Arbitrary-Lagrangian-Eulerian ADER-MOOD finite volume schemes for multidimensional hyperbolic conservation laws. J. Comput. Phys., 2015, 292: 56-87
[15.]
Boscheri, W., Loubère, R., Maire, P.-H.: A 3D cell-centered ADER MOOD finite volume method for solving updated Lagrangian hyperelasticity on unstructured grids. J. Comput. Phys. 449 (2022)
[16.]
Bouchut F, Klingenberg C, Waagan K. A multiwave HLL approximate Riemann solver for ideal MHD based on relaxation I: theoretical framework. Numer. Math., 2007, 108: 7-42
[17.]
Bouchut F, Klingenberg C, Waagan K. A multiwave approximate Riemann solver for ideal MHD based on relaxation II: numerical implementation with 3 and 5 waves. Numer. Math., 2010, 115: 647-679
[18.]
Brackbill JU, Barnes DC. The effects of Nonzero ∇ · B \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla \cdot {{\varvec {B}}}$$\end{document} on the numerical solution of the magnetohydrodynamics equations. J. Comput. Phys., 1980, 35: 426-430
[19.]
Brio M, Wu CC. An upwind differencing scheme for the equations of ideal magnetohydrodynamics. J. Comput. Phys., 1988, 75: 400-422
[20.]
Clain S, Diot S, Loubère R. A high-order finite volume method for systems of conservation laws with multi-dimensional optimal order detection (MOOD). J. Comput. Phys., 2011, 230(10): 4028-4050
[21.]
Dedner A, Kemm F, Kröner D, Munz CD, Schnitzer T, Wessenberg M. Hyperbolic divergence cleaning for the MHD equations. J. Comput. Phys., 2002, 175: 645-673
[22.]
Derigs, D.: Ideal GLM-MHD—a new mathematical model for simulating astrophysical plasmas. PhD thesis, Universität zu Köln (2018)
[23.]
Derigs D, Winters AR, Gassner GJ, Walch S, Bohm M. Ideal GLM-MHD: about the entropy consistent nine-wave magnetic field divergence diminishing ideal magnetohydrodynamics equations. J. Comput. Phys., 2018, 364: 420-467
[24.]
Després B. A new Lagrangian formulation of ideal magnetohydrodynamics. J. Hyperbolic Differ. Equ., 2011, 8: 21-35
[25.]
Després, B.: Numerical methods for Eulerian and Lagrangian conservation laws, 1st edn. Frontiers in mathematics. Birkhäuser Cham, Basel, Switzerland (2017)
[26.]
Dumbser M, Balsara DS, Tavelli M, Fambri F. A divergence-free semi-implicit finite volume scheme for ideal, viscous, and resistive magnetohydrodynamics. Int. J. Numer. Meth. Fluids, 2019, 89: 16-42
[27.]
Evans, C.R., Hawley, J.F.: Simulation of magnetohydrodynamic flows: a constrained transport model. Astrophys. J. 332 (1988)
[28.]
Fuchs F, Mishra S, Risebro NH. Splitting based finite volume schemes for the ideal MHD equations. J. Comput. Phys., 2009, 228: 641-660
[29.]
Fuchs FG, Murry ADM, Mishra S, Risebro NH, Waagan K. Approximate Riemann solvers and robust high-order finite volume schemes for multi-dimensional ideal MHD equations. Commun. Comput. Phys., 2011, 2: 324-362
[30.]
Gallice G. Positive and entropy stable Godunov-type schemes for gas dynamics and MHD equations in Lagrangian or Eulerian coordinates. Numer. Math., 2003, 94(4): 673-713
[31.]
Gardiner TA, Stone JM. An unsplit Godunov method for ideal MHD via constrained transport. J. Comput. Phys., 2005, 205: 509-539
[32.]
Georges G, Breil J, Maire P-H. A 3D GCL compatible cell-centered Lagrangian scheme for solving gas dynamics equations. J. Comput. Phys., 2016, 305: 921-941
[33.]
Godlewski E, Raviart P-A. . Numerical Approximation of Hyperbolic Systems of Conservation Laws, 1996 New York Springer
[34.]
Godunov SK. The symmetric form of magnetohydrodynamics equation. Numer. Methods Mech. Contin. Medium, 1972, 1: 26-34
[35.]
Gurtin ME, Fried E, Anand L. . The Mechanics and Thermodynamics of Continua, 2010 Cambridge, England Cambridge University Press
[36.]
Han J, Tang H. An adaptive moving mesh method for two-dimensional ideal magnetohydrodynamics. J. Comput. Phys., 2007, 220: 791-812
[37.]
Harten A, Lax PD, van Leer B. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev., 1983, 25(1): 35-61
[38.]
Jiang GS, Wu CC. A high-order WENO finite difference scheme for the equations of ideal magnetohydrodynamics. J. Comput. Phys., 1999, 150: 561-594
[39.]
Kulikovskii AG, Pogorelov NV, Semenov AY. . Mathematical Aspects of Numerical Solution of Hyperbolic Systems, 1999 Cambridge, England Chapman & Hall/CRC
[40.]
Li S. An HLLC Riemann solver for magneto-hydrodynamics. J. Comput. Phys., 2005, 203: 344-357
[41.]
Loubère, R., Maire, P.-H., Rebourcet, B.: Staggered and colocated finite volume schemes for Lagrangian hydrodynamics. In: Abgrall, R., Shu, C.-W., Du, Q., Glowinski, R., Hintermüller, M., Süli, E. (eds.) Handbook of Numerical Methods for Hyperbolic Problems Basic and Fundamental Issues. Handbook of Numerical Analysis, vol. 17, pp. 319–352 (2016)
[42.]
Maire P-H. A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes. J. Comput. Phys., 2009, 228: 2391-2425
[43.]
Maire P-H, Abgrall R, Breil J, Loubère R, Rebourcet B. A nominally second-order cell-centered Lagrangian scheme for simulating elastic-plastic flows on two-dimensional unstructured grids. J. Comput. Phys., 2013, 235(C): 626-665
[44.]
Nikl J, Kucharik M, Weber S. High-order curvilinear finite element magneto-hydrodynamics I: a conservative Lagrangian scheme. J. Comput. Phys., 2022, 464: 111158
[45.]
Ogilvie, G.I.: Lecture notes astrophysical fluid dynamics. J. Plasma Phys. 82(3), 205820301 (2016)
[46.]
Orszag SA, Tang CM. Small-scale structure of two-dimensional magnetohydrodynamic turbulence. J. Fluid Mech., 1979, 90: 129
[47.]
Powell, K.G.: An approximate Riemann solver for magnetohydrodynamics (That Works in More than One Dimension). ICASE-Report 94-24, NASA Langley Research Center (1994)
[48.]
Powell KG, Roe PL, Linde TJ, Gombosi TI, Zeeuw DLD. A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J. Comput. Phys., 1999, 154(2): 284-309
[49.]
Ryu D, Jones TW. Numerical magnetohydrodynamics in astrophysics: algorithm and tests for one-dimensional flow. Astrophys. J., 1995, 442: 228-258
[50.]
Toro EF, Titarev VA. Derivative Riemann solvers for systems of conservation laws and ADER methods. J. Comput. Phys., 2006, 212(1): 150-165
[51.]
Torrilhon M. Non-uniform convergence of finite volume schemes for Riemann problems of ideal magnetohydrodynamics. J. Comput. Phys., 2003, 192: 73-94
[52.]
Torrilhon M, Balsara DS. High order WENO schemes: investigations on non-uniform convergence for MHD Riemann problems. J. Comput. Phys., 2004, 201: 586-600
[53.]
Trangenstein JA. . Numerical Solution of Hyperbolic Partial Differential Equations, 2009 Cambridge, England Cambridge University Press
[54.]
Vilar F. Cell-centered discontinuous Galerkin discretization for two-dimensional Lagrangian hydrodynamics. Comput. Fluids, 2012, 64: 64-73
[55.]
Vilar, F., Maire, P.-H., Abgrall, R.: A discontinuous Galerkin discretization for solving the two-dimensional gas dynamics equations written under total Lagrangian formulation on general unstructured grids. J. Comput. Phys. 276, 188–234 (2014)
[56.]
Wu K, Shu C-W. Provably positive high-order schemes for ideal magnetohydrodynamics: analysis on general meshes. Numer. Math., 2019, 142(4): 995-1047
[57.]
Xu X, Dai Z, Gao Z. A 3D cell-centered Lagrangian scheme for the ideal magnetohydrodynamics equations on unstructured meshes. Comput. Methods Appl. Mech. Eng., 2018, 342: 490-508
[58.]
Zou S, Zhao X, Yu X, Dai Z. A RKDG method for 2D Lagrangian ideal magnetohydrodynamics equations with exactly divergence-free magnetic field. Commun. Comput. Phys., 2022, 32: 547-582

Accesses

Citations

Detail

Sections
Recommended

/