A Central Scheme for Two Coupled Hyperbolic Systems

Michael Herty, Niklas Kolbe, Siegfried Müller

Communications on Applied Mathematics and Computation ›› 2023, Vol. 6 ›› Issue (4) : 2093-2118. DOI: 10.1007/s42967-023-00306-5
Original Paper

A Central Scheme for Two Coupled Hyperbolic Systems

Author information +
History +

Abstract

A novel numerical scheme to solve two coupled systems of conservation laws is introduced. The scheme is derived based on a relaxation approach and does not require information on the Lax curves of the coupled systems, which simplifies the computation of suitable coupling data. The coupling condition for the underlying relaxation system plays a crucial role as it determines the behaviour of the scheme in the zero relaxation limit. The role of this condition is discussed, a consistency concept with respect to the original problem is introduced, the well-posedness is analyzed and explicit, nodal Riemann solvers are provided. Based on a case study considering the p-system of gas dynamics, a strategy for the design of the relaxation coupling condition within the new scheme is provided.

Keywords

Coupled conservation laws / Hyperbolic systems / Finite-volume schemes / Coupling conditions / Relaxation system

Cite this article

Download citation ▾
Michael Herty, Niklas Kolbe, Siegfried Müller. A Central Scheme for Two Coupled Hyperbolic Systems. Communications on Applied Mathematics and Computation, 2023, 6(4): 2093‒2118 https://doi.org/10.1007/s42967-023-00306-5

References

[1.]
Adimurthi MS, Veerappa Gowda GD. Optimal entropy solutions for conservation laws with discontinuous flux-functions. J. Hyperbolic Differ. Equ., 2005, 2(4): 783-837,
CrossRef Google scholar
[2.]
Ambroso A, Chalons C, Coquel F, Godlewski E, Lagoutière F, Raviart P-A, Seguin N. Coupling of general Lagrangian systems. Math. Comput., 2008, 77(262): 909-941,
CrossRef Google scholar
[3.]
Andreianov B, Karlsen KH, Risebro NH. A theory of L 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document}-dissipative solvers for scalar conservation laws with discontinuous flux. Arch. Ration. Mech. Anal., 2011, 201(1): 27-86,
CrossRef Google scholar
[4.]
Banda MK, Häck A-S, Herty M. Numerical discretization of coupling conditions by high-order schemes. J. Sci. Comput., 2016, 69(1): 122-145,
CrossRef Google scholar
[5.]
Banda MK, Herty M, Klar A. Gas flow in pipeline networks. Netw. Heterog. Media, 2006, 1(1): 41-56,
CrossRef Google scholar
[6.]
Banda MK, Herty M, Klar A. Coupling conditions for gas networks governed by the isothermal Euler equations. Netw. Heterog. Media, 2006, 1(2): 295-314,
CrossRef Google scholar
[7.]
Banda MK, Herty M, Ngnotchouye JMT. On linearized coupling conditions for a class of isentropic multiphase drift-flux models at pipe-to-pipe intersections. J. Comput. Appl. Math., 2015, 276: 81-97,
CrossRef Google scholar
[8.]
Borsche R. Numerical schemes for networks of hyperbolic conservation laws. Appl. Numer. Math., 2016, 108: 157-170,
CrossRef Google scholar
[9.]
Borsche R, Kall J. ADER schemes and high order coupling on networks of hyperbolic conservation laws. J. Comput. Phys., 2014, 273: 658-670,
CrossRef Google scholar
[10.]
Borsche R, Klar A. Kinetic layers and coupling conditions for scalar equations on networks. Nonlinearity, 2018, 31(7): 3512-3541,
CrossRef Google scholar
[11.]
Bressan A. . Hyperbolic Systems of Conservation Laws, 2000 Oxford Oxford University Press 250, The one-dimensional Cauchy problem
CrossRef Google scholar
[12.]
Bressan A, Čanić S, Garavello M, Herty M, Piccoli B. Flows on networks: recent results and perspectives. EMS Surv. Math. Sci., 2014, 1(1): 47-111,
CrossRef Google scholar
[13.]
Bretti G, Natalini R, Piccoli B. Fast algorithms for the approximation of a traffic flow model on networks. Discret. Contin. Dyn. Syst. Ser. B, 2006, 6(3): 427-448,
CrossRef Google scholar
[14.]
Brouwer J, Gasser I, Herty M. Gas pipeline models revisited: model hierarchies, nonisothermal models, and simulations of networks. Multiscale Model. Simul., 2011, 9(2): 601-623,
CrossRef Google scholar
[15.]
Bürger R, Karlsen KH, Klingenberg C, Risebro NH. A front tracking approach to a model of continuous sedimentation in ideal clarifier-thickener units. Nonlinear Anal. Real World Appl., 2003, 4(3): 457-481,
CrossRef Google scholar
[16.]
Chalons C, Raviart P-A, Seguin N. The interface coupling of the gas dynamics equations. Q. Appl. Math., 2008, 66(4): 659-705,
CrossRef Google scholar
[17.]
Chapman S, Cowling TG. . The Mathematical Theory of Non-Uniform Gases: an Account of the Kinetic Theory of Viscosity, Thermal Conduction, and Diffusion in Gases, 1990 3 Cambridge, New York Cambridge University Press
[18.]
Chertkov, M., Fisher, M., Backhaus, S., Bent, R., Misra, S.: Pressure fluctuations in natural gas networks caused by gas-electric coupling. In: 2015 48th Hawaii International Conference on System Sciences, pp. 2738–2747 (2015). https://doi.org/10.1109/hicss.2015.330
[19.]
Coclite GM, Garavello M. Vanishing viscosity for traffic on networks. SIAM J. Math. Anal., 2010, 42(4): 1761-1783,
CrossRef Google scholar
[20.]
Colombo RM, Herty M, Sachers V. On 2 × 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times 2$$\end{document} conservation laws at a junction. SIAM J. Math. Anal., 2008, 40(2): 605-622,
CrossRef Google scholar
[21.]
Colombo RM, Mauri C. Euler system for compressible fluids at a junction. J. Hyperbolic Differ. Equ., 2008, 5(3): 547-568,
CrossRef Google scholar
[22.]
Coquel F, Jin S, Liu J-G, Wang L. Well-posedness and singular limit of a semilinear hyperbolic relaxation system with a two-scale discontinuous relaxation rate. Arch. Ration. Mech. Anal., 2014, 214(3): 1051-1084,
CrossRef Google scholar
[23.]
D’Apice C, Göttlich S, Herty M, Piccoli B. . Modeling, Simulation, and Optimization of Supply Chains, 2010 Philadelphia Society for Industrial and Applied Mathematics (SIAM) 206, A continuous approach
CrossRef Google scholar
[24.]
Diehl S. On scalar conservation laws with point source and discontinuous flux function. SIAM J. Math. Anal., 1995, 26(6): 1425-1451,
CrossRef Google scholar
[25.]
Dubois F, Le Floch P. Boundary conditions for nonlinear hyperbolic systems of conservation laws. J. Differential Equations, 1988, 71(1): 93-122,
CrossRef Google scholar
[26.]
Egger H. A robust conservative mixed finite element method for isentropic compressible flow on pipe networks. SIAM J. Sci. Comput., 2018, 40(1): 108-129,
CrossRef Google scholar
[27.]
Formaggia L, Nobile F, Quarteroni A, Veneziani A. Multiscale modelling of the circulatory system: a preliminary analysis. Comput. Vis. Sci., 1999, 2(2/3): 75-83,
CrossRef Google scholar
[28.]
Garavello M, Han K, Piccoli B. . Models for vehicular traffic on networks, 2016 American Institute of Mathematical Sciences (AIMS) Springfield 474
[29.]
Garavello M, Piccoli B. . Traffic Flow on Networks: Conservation Law Models, 2006 Springfield American Inst. of Mathematical Sciences
[30.]
Gimse T, Risebro NH. Solution of the Cauchy problem for a conservation law with a discontinuous flux function. SIAM J. Math. Anal., 1992, 23(3): 635-648,
CrossRef Google scholar
[31.]
Godlewski E, Raviart P-A. The numerical interface coupling of nonlinear hyperbolic systems of conservation laws: I. The scalar case. Numer. Math., 2004, 97(1): 81-130,
CrossRef Google scholar
[32.]
Godlewski E, Raviart PA. A method of coupling non-linear hyperbolic systems: examples in CFD and plasma physics. Int. J. Numer. Methods Fluids, 2005, 47(10/11): 1035-1041, 8th ICFD Conference on Numerical Methods for Fluid Dynamics. Part 2
CrossRef Google scholar
[33.]
Hantke M, Müller S. Analysis and simulation of a new multi-component two-phase flow model with phase transitions and chemical reactions. Q. Appl. Math., 2018, 76(2): 253-287,
CrossRef Google scholar
[34.]
Hantke M, Müller S. Closure conditions for a one temperature non-equilibrium multi-component model of Baer-Nunziato type. ESAIM Proc. Surv., 2019, 66: 42-60,
CrossRef Google scholar
[35.]
Herty M, Jörres C, Piccoli B. Existence of solution to supply chain models based on partial differential equation with discontinuous flux function. J. Math. Anal. Appl., 2013, 401(2): 510-517,
CrossRef Google scholar
[36.]
Herty M, Kolbe N, Müller S. Central schemes for networked scalar conservation laws. Netw. Heterog. Media, 2023, 18(1): 310-340,
CrossRef Google scholar
[37.]
Herty M, Mohring J, Sachers V. A new model for gas flow in pipe networks. Math. Methods Appl. Sci., 2010, 33(7): 845-855,
CrossRef Google scholar
[38.]
Herty M, Müller S, Sikstel A. Coupling of compressible Euler equations. Vietnam J. Math., 2019, 47(4): 769-792,
CrossRef Google scholar
[39.]
Herty M, Rascle M. Coupling conditions for a class of second-order models for traffic flow. SIAM J. Math. Anal., 2006, 38(2): 595-616,
CrossRef Google scholar
[40.]
Holden H, Risebro NH. A mathematical model of traffic flow on a network of unidirectional roads. SIAM J. Math. Anal., 1995, 26(4): 999-1017,
CrossRef Google scholar
[41.]
Holle Y, Herty M, Westdickenberg M. New coupling conditions for isentropic flow on networks. Netw. Heterog. Media, 2020, 15(4): 605-631,
CrossRef Google scholar
[42.]
Hu J, Jin S, Li Q. Asymptotic-preserving schemes for multiscale hyperbolic and kinetic equations. Handbook of Numerical Analysis, 2017 Amsterdam Elsevier 103-129,
CrossRef Google scholar
[43.]
Jin S, Liu J-G, Wang L. A domain decomposition method for semilinear hyperbolic systems with two-scale relaxations. Math. Comput., 2013, 82(282): 749-779,
CrossRef Google scholar
[44.]
Jin S, Xin Z. The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Commun. Pure Appl. Math., 1995, 48(3): 235-276,
CrossRef Google scholar
[45.]
Karlsen KH, Klingenberg C, Risebro NH. A relaxation scheme for conservation laws with a discontinuous coefficient. Math. Comput., 2003, 73(247): 1235-1260,
CrossRef Google scholar
[46.]
Karlsen KH, Towers JD. Convergence of a Godunov scheme for conservation laws with a discontinuous flux lacking the crossing condition. J. Hyperbolic Differ. Equ., 2017, 14(04): 671-701,
CrossRef Google scholar
[47.]
Kolb O, Lang J, Bales P. An implicit box scheme for subsonic compressible flow with dissipative source term. Numer. Algorithms, 2010, 53(2/3): 293-307,
CrossRef Google scholar
[48.]
Kolbe N. Numerical relaxation limit and outgoing edges in a central scheme for networked conservation laws. PAMM, 2023, 23(1): 202200150,
CrossRef Google scholar
[49.]
Liu T-P. Hyperbolic conservation laws with relaxation. Commun. Math. Phys., 1987, 108(1): 153-175,
CrossRef Google scholar
[50.]
Mishra S. Numerical methods for conservation laws with discontinuous coefficients. Handbook of Numerical Analysis, 2017 Amsterdam Elsevier 479-506,
CrossRef Google scholar
[51.]
Müller LO, Blanco PJ. A high order approximation of hyperbolic conservation laws in networks: application to one-dimensional blood flow. J. Comput. Phys., 2015, 300: 423-437,
CrossRef Google scholar
[52.]
Müller S, Voss A. The Riemann problem for the Euler equations with nonconvex and nonsmooth equation of state: construction of wave curves. SIAM J. Sci. Comput., 2006, 28(2): 651-681,
CrossRef Google scholar
[53.]
Reigstad GA, Flåtten T, Erland Haugen N, Ytrehus T. Coupling constants and the generalized Riemann problem for isothermal junction flow. J. Hyperbolic Differ. Equ., 2015, 12(1): 37-59,
CrossRef Google scholar
[54.]
Sikstel, A.: Analysis and numerical methods for coupled hyperbolic conservation laws. Dissertation, RWTH Aachen University, Aachen (2020). https://doi.org/10.18154/RWTH-2020-07821
[55.]
Towers JD. An explicit finite volume algorithm for vanishing viscosity solutions on a network. Netw. Heterog. Media, 2022, 17(1): 1,
CrossRef Google scholar
[56.]
Zlotnik, A., Roald, L., Backhaus, S., Chertkov, M., Andersson, G.: Control policies for operational coordination of electric power and natural gas transmission systems. In: 2016 American Control Conference (ACC), pp. 7478–7483 (2016). https://doi.org/10.1109/ACC.2016.7526854
Funding
Deutsche Forschungsgemeinschaft(HE5386/18-1,19-2,22-1,23-1,25-1); Deutsche Forschungsgemeinschaft(ERS SFDdM035); RWTH Aachen University (3131)

Accesses

Citations

Detail

Sections
Recommended

/