Convergence of Hyperbolic Neural Networks Under Riemannian Stochastic Gradient Descent

Wes Whiting, Bao Wang, Jack Xin

Communications on Applied Mathematics and Computation ›› 2023, Vol. 6 ›› Issue (2) : 1175-1188. DOI: 10.1007/s42967-023-00302-9
Original Paper

Convergence of Hyperbolic Neural Networks Under Riemannian Stochastic Gradient Descent

Author information +
History +

Abstract

We prove, under mild conditions, the convergence of a Riemannian gradient descent method for a hyperbolic neural network regression model, both in batch gradient descent and stochastic gradient descent. We also discuss a Riemannian version of the Adam algorithm. We show numerical simulations of these algorithms on various benchmarks.

Keywords

Hyperbolic neural network / Riemannian gradient descent / Riemannian Adam (RAdam) / Training convergence

Cite this article

Download citation ▾
Wes Whiting, Bao Wang, Jack Xin. Convergence of Hyperbolic Neural Networks Under Riemannian Stochastic Gradient Descent. Communications on Applied Mathematics and Computation, 2023, 6(2): 1175‒1188 https://doi.org/10.1007/s42967-023-00302-9

References

[1.]
Bécigneul, G., Ganea, O.-E.: Riemannian adaptive optimization methods. arXiv:1810.00760 (2019)
[2.]
Bonnabel S. Stochastic gradient descent on Riemannian manifolds. IEEE Trans. Autom. Control, 2013, 58(9): 2217-2229,
CrossRef Google scholar
[3.]
De Sa, C., Gu, A., Ré, C., Sala, F.: Representation tradeoffs for hyperbolic embeddings. CoRR, arXiv:1804.03329 (2018)
[4.]
Ganea, O.-E., Bécigneul, G., Hofmann, T.: Hyperbolic neural networks. CoRR, arXiv:1805.09112 (2018)
[5.]
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980v9 (2014)
[6.]
Kratsios, A., Bilokopytov, I.: Non-Euclidean universal approximation. CoRR, arXiv:2006.02341 (2020)
[7.]
Miller GA, Beckwith R, Fellbaum C, Gross D, Miller KJ. Introduction to WordNet: an on-line lexical database. Int. J. Lexicogr., 1990, 3(4): 235-244,
CrossRef Google scholar
[8.]
Nagano, Y., Yamaguchi, S., Fujita, Y., Koyama, M.: A wrapped normal distribution on hyperbolic space for gradient-based learning. arXiv.1902.02992 (2019)
[9.]
Neto JC, De Lima L, Oliveira P. Geodesic algorithms in Riemannian geometry. Balkan J. Geom. Appl. (BJGA), 1998, 3: 01
[10.]
Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. arXiv:1705.08039v2 (2017)
[11.]
Peng, W., Varanka, T., Mostafa, A., Shi, H., Zhao, G.: Hyperbolic deep neural networks: a survey. arXiv:2101.04562 (2021)
[12.]
Ungar AA. . A Gyrovector Space Approach to Hyperbolic Geometry, 2009 San Rafael Morgan & Claypool Publishers,
CrossRef Google scholar
Funding
Directorate for Mathematical and Physical Sciences(DMS-1924935); Directorate for Mathematical and Physical Sciences(DMS-2208361); U.S. Department of Energy(DE-SC0002722)

Accesses

Citations

Detail

Sections
Recommended

/